Responsive image
博碩士論文 etd-0720115-114205 詳細資訊
Title page for etd-0720115-114205
論文名稱
Title
周邊性發炎會經由誘發在海馬迴的神經性發炎及氧化壓力而增加癲癇敏感性之研究
Peripheral inflammation increases seizure susceptibility via the induction of neuroinflammation and oxidative stress in the hippocampus
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
135
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-23
繳交日期
Date of Submission
2015-08-20
關鍵字
Keywords
海馬迴、癲癇、周邊發炎、氧化壓力、神經發炎、促炎性細胞激素、環氧合酶-2
Neuroinflammation, Proinflammatory cytokines, Cyclooxygenase-2, Oxidative stress, Seizure, Hippocampus, Peripheral inflammation
統計
Statistics
本論文已被瀏覽 5694 次,被下載 586
The thesis/dissertation has been browsed 5694 times, has been downloaded 586 times.
中文摘要
癲癇是一種常見的神經系統疾病。神經發炎與癲癇的致病機轉相關。組織氧化壓力則是癲癇另一個重要致病因素。雖然神經發炎和腦部氧化壓力這兩個因素均參與癲癇致病機轉;然而,對於這兩個因素在癲癇致病機轉的相互關係,尚未完全了解。在這項研究中,我們研究神經發炎和腦部氧化壓力這兩個因素在癲癇的致病機轉的相互關係以及潛在的分子機制。

在目標1中,我們經由在大鼠的腹膜腔內連續灌注細菌內毒素LPS (2.5 mg/kg/day) 7天或14天,建立經由周邊發炎導致慢性神經發炎的動物模式。此動物模式則呈現在血漿和腦部各處位置(額葉,顳葉,海馬迴,紋狀體,延髓頭端腹外側:RVLM,孤束核:NTS) 均增加促炎性細胞激素 (IL-1β, IL-6, TNF-α),在腦部各處位置增加活化的小膠質細胞數量,以及對KA (10 mg/kg) 注射誘發的癲癇敏感性增加。在之後的研究,我們主要在海馬迴:人類常見的顳葉癲癇最相關的腦部位置,在慢性神經發炎7天的動物模式中,經由滲透性微型幫浦持續注射治療藥物於側腦室7天,去探討癲癇機轉。

在目標2中,我們將注射環氧合酶-2抑制劑:NS398 (5 μg/μl/h) 於側腦室7天,經由治療神經發炎後,去研究神經發炎和組織氧化壓力在癲癇敏感性之間的相互關係。結果呈現,環氧合酶-2抑制劑會阻斷在海馬迴的活化的小膠質細胞和促炎性細胞因子的增加,以及阻斷在海馬迴的組織氧化壓力的增加(NADPH oxidase subunits 上升),也會減輕在KA誘導的癲癇模式中增加的癲癇敏感性。

在目標3中,我們將注射活性氧化物清除劑:tempol (2.5 μg/μl/h) 於側腦室7天,經由治療氧化壓力後,去研究神經發炎和組織氧化壓力在癲癇敏感性之間的相互關係。結果呈現,活性氧化物清除劑無法阻斷在海馬迴的活化的小膠質細胞和促炎性細胞激素的增加,但是可以阻斷在海馬迴的組織氧化壓力的增加(NADPH oxidase subunits 上升),也會減輕在KA誘導的癲癇模式中增加的癲癇敏感性。

這些結果顯現,周邊發炎會誘發在海馬迴的神經發炎以及之後的氧力壓力,進而導致癲癇敏感性的增加。這些結果更進一步顯現,在周邊發炎後,保護海馬迴免於神經發炎和氧化壓力,對降低癲癇的敏感性具有增益效果。
Abstract
Epilepsy is a common neurological disorder. Neuroinflammation is involved in the pathophysiology of epilepsy. Tissue oxidative stress is another confounding factor in epilepsy. While both neuroinflammation and brain oxidative stress are involved, relationship between these two factors in epileptogenesis, however, is not fully understood. In this study, I investigated the relationship and the underlying molecular mechanism.

In aim 1, I established a rodent model of chronic neuroinflammation via peripheral inflammation induced by continuous infusion of E. coli lipopolysaccharide (LPS; 2.5 mg/kg/day) in the peritoneum for 7 or 14 days. Results showed an increased proinflammatory cytokines level, including IL-1β, IL-6 and TNF-α in plasma and various areas of brain (frontal lobe, temporal lobe, hippocampus, striatum, rostral ventrolateral medulla (RVLM), nucleus tractus solitarii (NTS)), increased number of the activated microglia in brain and sensitivity to induction of seizure by KA (KA, 10 mg/kg) injection. Based on these findings, I focused my study on the hippocampus, which is associated with temporal lobe epilepsy, a common form of epilepsy in human. Pharmacological agents were delivered via intracerebroventricular infusion with an osmotic minipump in chronic neuroinflammation model for 7 days.

In aim 2, a cycloxygenase-2 inhibitor, NS398 (5 μg/μl/h), was used to study the relationship between neuroinflammation and tissue oxidative stress in seizure susceptibility after the LPS-induced peripheral inflammation. The results showed that NS398 significantly blunted the increase in microglia activation, production of proinflammatory cytokines, and tissue oxidative stress (upregulations of the NADPH oxidase subunits) in the hippocampus. The same treatment also ameliorated the increase in seizure susceptibility in the KA-induced seizure model.

In aim 3, a reactive oxygen species scavenger, tempol (2.5 μg/μl/h), was used to study the relationship between neuroinflammation and oxidative stress in the increase in seizure susceptibility under peripheral inflammation. The results showed that tempol did not blunt the increase in activated microglia, production of proinflammatory cytokines, but significantly blunted tissue oxidative stress (upregulations of the NADPH oxidase subunits) in the hippocampus and ameliorated the increase in seizure susceptibility in the KA-induced seizure model.

These results indicated that peripheral inflammation evoked neuroinflammation and the subsequent oxidative stress in the hippocampus, resulting in the increase seizure susceptibility. Moreover, protection from neuroinflammation and oxidative stress in the hippocampus exerted beneficial effect on seizure susceptibility following peripheral inflammation.
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
誌謝 (Acknowledgement) iii
中文摘要及關鍵詞 (Abstract in Chinese & Keywords) v
英文摘要及關鍵詞 (Abstract in English & Keywords) vii
目錄 (Index) ix
圖次 (Figure Index) xvii
表次 (Table Index) xxii
符號說明 (Abbreviations) xxiii
Chapter 1. General Introduction 1
1.1 Epilepsy 2
1.2 Peripheral inflammation 4
1.3 Neuroinflammation 5
1.4 Oxidative stress 7
1.5 Specific Aims 9
Chapter 2. Establish a rodent model of chronic neuroinflammation induced by peripheral inflammation 10
2.1 Introduction 11
2.2 Materials and Methods 13
2.3 Results 18
2.4 Discussion 20
2.5 Figures and Legends 22
Figure 2-1: Experimental procedures of a rodent model of chronic neuroinflammation induced by peripheral inflammation. 22
Figure 2-2: Intraperitoneal LPS infusion induces peripheral inflammation. 23
Figure 2-3: Intraperitoneal LPS infusion induces neuroinflammation in frontal lobe. 24
Figure 2-4: Intraperitoneal LPS infusion induces neuroinflammation in temporal lobe. 25
Figure 2-5: Intraperitoneal LPS infusion induces neuroinflammation in hippocampus. 26
Figure 2-6: Intraperitoneal LPS infusion induces neuroinflammation in striatum. 27
Figure 2-7: Intraperitoneal LPS infusion induces neuroinflammation in RVLM. 28
Figure 2-8: Intraperitoneal LPS infusion induces neuroinflammation in NTS. 29
Figure 2-9 (A-B): Intraperitoneal LPS infusion induces microglial activation in frontal lobe (A) and temporal lobe (B). 30
Figure 2-9 (C-D): Intraperitoneal LPS infusion induces microglial activation in hippocampus (C) and striatum (D). 31
Figure 2-9 (E-F): Intraperitoneal LPS infusion induces microglial activation in RVLM (E) and NTS (F). 32
Figure 2-10: Increase in seizure susceptibility after intraperitoneal LPS infusion. 33
Figure 2-11: Scheme of the proposed mechanism of a rodent model of chronic neuroinflammation induced by peripheral inflammation. 34
2.6 Tables 35
Table 2-1. No change in body weight, body temperature, daily food or water intake after intraperitoneal LPS infusion. 35
Chapter 3. The role of neuroinflammation in seizure susceptibility under the LPS-induced peripheral inflammation 36
3.1 Introduction 37
3.2 Materials and Methods 39
3.3 Results 46
3.4 Discussion 49
3.5 Figures and Legends 52
Figure 3-1: Experimental procedures of the role of neuroinflammation in seizure susceptibility under the LPS-induced peripheral inflammation. 52
Figure 3-2: Intraperitoneal LPS infusion induces peripheral inflammation which is not affected by intracerebroventricular infusion of NS398. 53
Figure 3-3: Intraperitoneal LPS infusion induces a COX-2-dependent neuroinflammation in the hippocampus. 54
Figure 3-4: Intraperitoneal LPS infusion induces a COX-2-dependent increase in tissue superoxide levels in the hippocampus. 55
Figure 3-5: The COX-2-dependent upregulations of the NADPH oxidase subunits in the hippocampus after intraperitoneal LPS infusion. 56
Figure 3-6: The COX-2-dependent upregulations of antioxidant proteins in the hippocampus after intraperitoneal LPS infusion. 57
Figure 3-7 (A): Intraperitoneal LPS infusion induces a COX-2-dependent microglial activation in the hippocampus. 58
Figure 3-7 (B): Intraperitoneal LPS infusion induces a COX-2-dependent microglial activation in the hippocampus. 59
Figure 3-7 (C): Intraperitoneal LPS infusion induces a COX-2-dependent microglial activation in the hippocampus. 60
Figure 3-7 (D): Intraperitoneal LPS infusion induces a COX-2-dependent microglial activation in the hippocampus. 61
Figure 3-8: COX-2-dependent increase in seizure susceptibility after intraperitoneal LPS infusion. 62
Figure 3-9: Scheme of the proposed mechanism of the role of neuroinflammation in seizure susceptibility under the LPS-induced peripheral inflammation. 63
3.6 Tables 64
Table 3-1. Effect of daily bolus injection of NS398 on the increases in plasma proinflammatory cytokine levels following intraperitoneal infusion of LPS for 7 days. 64
Table 3-2. Effect of daily bolus injection of NS398 on the increases in in tissue proinflammatory cytokine levels in the hippocampus following intraperitoneal infusion of LPS for 7 days. 65
Chapter 4. The relationship between oxidative stress and neuroinflammation in seizure susceptibility under the LPS-induced peripheral inflammation 66
4.1 Introduction 67
4.2 Materials and Methods 68
4.3 Results 74
4.4 Discussion 77
4.5 Figures and Legends 81
Figure 4-1: Experimental procedures of the relationship between neuroinflammation and oxidative stress in seizure susceptibility under the LPS-induced peripheral inflammation. 81
Figure 4-2: Intraperitoneal LPS infusion induces peripheral inflammation which is not affected by intracerebroventricular infusion of tempol. 82
Figure 4-3: Intraperitoneal LPS infusion induces neuroinflammation in the hippocampus. 83
Figure 4-4: Intraperitoneal LPS infusion induces a redox-sensitive increase in tissue superoxide levels in the hippocampus. 84
Figure 4-5: The upregulations of the NADPH oxidase subunits in the hippocampus after intraperitoneal LPS infusion. 85
Figure 4-6: The upregulations of antioxidant proteins in the hippocampus after intraperitoneal LPS infusion. 86
Figure 4-7 (A): Intraperitoneal LPS infusion induces microglial activation in the hippocampus. 87
Figure 4-7 (B): Intraperitoneal LPS infusion induces microglial activation in the hippocampus. 88
Figure 4-7 (C): Intraperitoneal LPS infusion induces microglial activation in the hippocampus. 89
Figure 4-7 (D): Intraperitoneal LPS infusion induces microglial activation in the hippocampus. 90
Figure 4-8: Redox-sensitive increase in seizure susceptibility following peripheral inflammation 91
Figure 4-9: Scheme of the proposed mechanism of the relationship between neuroinflammation and oxidative stress in seizure susceptibility under the LPS-induced peripheral inflammation. 92
Conclusion 93
Limitations and Future Perspectives 94
References 95
Publications 108
Conference Presentation 109
參考文獻 References
Adam, N., S. Kandelman, J. Mantz, F. Chretien and T. Sharshar (2013). "Sepsis-induced brain dysfunction." Expert Rev Anti Infect Ther 11(2): 211-221.

Ambrogini, P., A. Minelli, C. Galati, M. Betti, D. Lattanzi, S. Ciffolilli, M. Piroddi, F. Galli and R. Cuppini (2014). "Post-seizure alpha-tocopherol treatment decreases neuroinflammation and neuronal degeneration induced by status epilepticus in rat hippocampus." Mol Neurobiol 50(1): 246-256.

Aronica, E. and P. B. Crino (2011). "Inflammation in epilepsy: clinical observations." Epilepsia 52 Suppl 3: 26-32.

Asari, Y., M. Majima, K. Sugimoto, M. Katori and T. Ohwada (1996). "Release site of TNF alpha after intravenous and intraperitoneal injection of LPS from Escherichia coli in rats." Shock 5(3): 208-212.

Bellissimo, M. I., D. Amado, D. S. Abdalla, E. C. Ferreira, E. A. Cavalheiro and M. G. Naffah-Mazzacoratti (2001). "Superoxide dismutase, glutathione peroxidase activities and the hydroperoxide concentration are modified in the hippocampus of epileptic rats." Epilepsy Res 46(2): 121-128.

Bergsbaken, T., S. L. Fink and B. T. Cookson (2009). "Pyroptosis: host cell death and inflammation." Nat Rev Microbiol 7(2): 99-109.

Bianchi, R., S. C. Chuang, W. Zhao, S. R. Young and R. K. Wong (2009). "Cellular plasticity for group I mGluR-mediated epileptogenesis." J
Neurosci 29(11): 3497-3507.

Block, M. L., L. Zecca and J. S. Hong (2007). "Microglia-mediated neurotoxicity: uncovering the molecular mechanisms." Nat Rev Neurosci 8(1): 57-69.

Blumcke, I., et al. (2013). "International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a Task Force report from the ILAE Commission on Diagnostic Methods." Epilepsia 54(7): 1315-1329.

Bocca, C., F. Bozzo and A. Miglietta (2014). "COX2 inhibitor NS398 reduces HT-29 cell invasiveness by modulating signaling pathways mediated by EGFR and HIF1-alpha." Anticancer Res 34(4): 1793-1800.

Chan, S. H. H. and J. Y. H. Chan (2014). "Brain stem NOS and ROS in neural mechanisms of hypertension." Antioxid Redox Signal 20(1): 146-163.

Chao, Y., S. C. Wong and E. K. Tan (2014). "Evidence of inflammatory system involvement in Parkinson's disease." Biomed Res Int 2014: 308654.

Chen, D., Y. Lu, W. Yu, J. Luo, Z. Xiao, F. Xiao and X. Wang (2012). "Clinical value of decreased superoxide dismutase 1 in patients with epilepsy." Seizure 21(7): 508-511.

Chen, S. D., A. Y. Chang and Y. C. Chuang (2010). "The potential role of mitochondrial dysfunction in seizure-associated cell death in the hippocampus and epileptogenesis." J Bioenerg Biomembr 42(6): 461-465.

Chen, Y. H., T. T. Kuo, M. T. Chu, H. I. Ma, Y. H. Chiang and E. Y. Huang (2013). "Postnatal systemic inflammation exacerbates impairment of hippocampal synaptic plasticity in an animal seizure model." Neuroimmunomodulation 20(4): 223-232.

Chuang, Y. C., S. D. Chen, C. W. Liou, T. K. Lin, W. N. Chang, S. H. H. Chan and A. Y. W. Chang (2009). "Contribution of nitric oxide, superoxide anion, and peroxynitrite to activation of mitochondrial apoptotic signaling in hippocampal CA3 subfield following experimental temporal lobe status epilepticus." Epilepsia 50(4): 731-746.

Chuang, Y. C., T. K. Lin, H. Y. Huang, W. N. Chang, C. W. Liou, S. D. Chen, A. Y. W. Chang and S. H. H. Chan (2012). "Peroxisome proliferator-activated receptors gamma/mitochondrial uncoupling protein 2 signaling protects against seizure-induced neuronal cell death in the hippocampus following experimental status epilepticus." J Neuroinflam 9: 184.

Coan, A. C., M. E. Morita, B. M. Campos, F. P. Bergo, B. Y. Kubota and F. Cendes (2013). "Amygdala enlargement occurs in patients with mesial temporal lobe epilepsy and hippocampal sclerosis with early epilepsy onset." Epilepsy Behav 29(2): 390-394.

Czapski, G. A., A. Adamczyk, R. P. Strosznajder and J. B. Strosznajder (2013). "Expression and activity of PARP family members in the hippocampus during systemic inflammation: their role in the regulation of prooxidative genes." Neurochem Int 62(5): 664-673.

D'Mello, C., T. Le and M. G. Swain (2009). "Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factoralpha signaling during peripheral organ inflammation." J Neurosci 29(7): 2089-2102.

da Fonseca, N. C., H. P. Joaquim, L. L. Talib, S. de Vincentiis, W. F. Gattaz and
K. D. Valente (2015). "Hippocampal serotonin depletion is related to the presence of generalized tonic-clonic seizures, but not to psychiatric disorders in patients with temporal lobe epilepsy." Epilepsy Res 111: 18-25.

Eadie, M. J. (2012). "Shortcomings in the current treatment of epilepsy." Expert Rev Neurother 12(12): 1419-1427.

Enli, Y., O. Oztekin and R. D. Pinarbasili (2009). "The nitroxide tempol has similar antioxidant effects as physiological levels of 17beta-oestradiol in reversing ovariectomy-induced oxidative stress in mice liver and kidney." Scand J Clin Lab Invest 69(4): 526-534.

Fan, N. C., C. M. Tsai, C. N. Hsu, L. T. Huang and Y. L. Tain (2013). "N-acetylcysteine prevents hypertension via regulation of the ADMA-DDAH pathway in young spontaneously hypertensive rats." Biomed Res Int 2013: 696317.

Folbergrova, J., J. Otahal and R. Druga (2012). "Brain superoxide anion formation in immature rats during seizures: protection by selected compounds." Exp Neurol 233(1): 421-429.

Gaki, G. S. and A. G. Papavassiliou (2014). "Oxidative stress-induced signaling pathways implicated in the pathogenesis of Parkinson's disease." Neuromolecular Med 16(2): 217-230.

Godukhin, O. V., S. G. Levin and E. Y. Parnyshkova (2009). "The effects of interleukin-10 on the development of epileptiform activity in the hippocampus induced by transient hypoxia, bicuculline, and electrical kindling." Neurosci Behav Physiol 39(7): 625-631.

Goehler, L. E., R. P. Gaykema, K. T. Nguyen, J. E. Lee, F. J. Tilders, S. F. Maier and L. R. Watkins (1999). "Interleukin-1beta in immune cells of the abdominal vagus nerve: a link between the immune and nervous systems?" J Neurosci 19(7): 2799-2806.

Henry, C. J., Y. Huang, A. M. Wynne and J. P. Godbout (2009). "Peripheral lipopolysaccharide (LPS) challenge promotes microglial hyperactivity in aged mice that is associated with exaggerated induction of both proinflammatory IL-1beta and anti-inflammatory IL-10 cytokines." Brain Behav Immun 23(3): 309-317.

Henshall, D. C. and T. Engel (2015). "P2X purinoceptors as a link between hyperexcitability and neuroinflammation in status epilepticus." Epilepsy Behav.
Hernandes, M. S., J. C. D'Avila, S. C. Trevelin, P. A. Reis, E. R. Kinjo, L. R. Lopes, H. C. Castro-Faria-Neto, F. Q. Cunha, L. R. Britto and F. A. Bozza (2014). "The role of Nox2-derived ROS in the development of cognitive impairment after sepsis." J Neuroinflam 11: 36.

Holtman, L., E. A. van Vliet, E. Aronica, D. Wouters, W. J. Wadman and J. A. Gorter (2013). "Blood plasma inflammation markers during epileptogenesis in post-status epilepticus rat model for temporal lobe epilepsy." Epilepsia 54(4): 589-595.

Hsing, C. H., et al. (2015). "Histone Deacetylase Inhibitor Trichostatin A Ameliorated Endotoxin-Induced Neuroinflammation and Cognitive Dysfunction." Mediators Inflamm 2015: 163140.

Janigro, D., P. H. Iffland, 2nd, N. Marchi and T. Granata (2013). "A role for inflammation in status epilepticus is revealed by a review of current therapeutic approaches." Epilepsia 54 Suppl 6: 30-32.

Kawamura, Y., Y. Yamazaki, M. Ohashi, M. Ihira and T. Yoshikawa (2014). "Cytokine and chemokine responses in the blood and cerebrospinal fluid of patients with human herpesvirus 6B-associated acute encephalopathy with biphasic seizures and late reduced diffusion." J Med Virol 86(3): 512-518.

Kim, J. H., B. G. Jang, B. Y. Choi, H. S. Kim, M. Sohn, T. N. Chung, H. C. Choi, H. K. Song and S. W. Suh (2013). "Post-treatment of an NADPH oxidase inhibitor prevents seizure-induced neuronal death." Brain Res 1499: 163-172.

Kovac, S., A. M. Domijan, M. C. Walker and A. Y. Abramov (2014). "Seizure activity results in calcium- and mitochondria-independent ROS production via NADPH and xanthine oxidase activation." Cell Death Dis 5: e1442.

Koyama, A., J. O'Brien, J. Weuve, D. Blacker, A. L. Metti and K. Yaffe (2013). "The role of peripheral inflammatory markers in dementia and Alzheimer's disease: a meta-analysis." J Gerontol A Biol Sci Med Sci 68(4): 433-440.

Kutukculer, N., et al. (1998). "Study of proinflammatory (TNF-alpha, IL-1alpha, IL-6) and T-cell-derived (IL-2, IL-4) cytokines in plasma and synovial fluid of patients with juvenile chronic arthritis: correlations with clinical and laboratory parameters." Clin Rheumatol 17(4): 288-292. Landazuri, P. (2014). "Mesial temporal lobe epilepsy: a distinct electroclinical subtype of temporal lobe epilepsy." Neurodiagn J 54(3): 274-288.

Landazuri P. (2014). " Mesial temporal lobe epilepsy: a distinct electroclinical subtype of temporal lobe epilepsy. " Neurodiagn J. 54(3):274-88.
Luheshi, G. N. (1998). "Cytokines and fever. Mechanisms and sites of action." Ann N Y Acad Sci 856: 83-89.

Luttjohann, A., P. F. Fabene and G. van Luijtelaar (2009). "A revised Racine's scale for PTZ-induced seizures in rats." Physiol Behav 98(5): 579-586.

Majores, M., J. Eils, O. D. Wiestler and A. J. Becker (2004). "Molecular profiling of temporal lobe epilepsy: comparison of data from human tissue samples and animal models." Epilepsy Res 60(2-3): 173-178.

Marcheselli, V. L. and N. G. Bazan (1996). "Sustained induction of prostaglandin endoperoxide synthase-2 by seizures in hippocampus. Inhibition by a platelet-activating factor antagonist." J Biol Chem 271(40): 24794-24799.

Martinc, B., I. Grabnar and T. Vovk (2014). "Antioxidants as a preventive treatment for epileptic process: a review of the current status." Curr Neuropharmacol 12(6): 527-550.

Mendez-Armenta, M., C. Nava-Ruiz, D. Juarez-Rebollar, E. Rodriguez-Martinez and P. Y. Gomez (2014). "Oxidative stress associated with neuronal apoptosis in experimental models of epilepsy." Oxid Med Cell Longev 2014: 293689.

Michels, M., A. S. Vieira, F. Vuolo, H. G. Zapelini, B. Mendonca, F. Mina, D. Dominguini, A. Steckert, P. F. Schuck, J. Quevedo, F. Petronilho and F. Dal-Pizzol (2015). "The role of microglia activation in the development of sepsis-induced long-term cognitive impairment." Brain Behav Immun 43: 54-59.

Mori, N., J. A. Wada, M. Watanabe and H. Kumashiro (1991). "Increased activity of superoxide dismutase in kindled brain and suppression of kindled seizure following intra-amygdaloid injection of superoxide dismutase in rats." Brain Res 557(1-2): 313-315.

Murta, V., M. I. Farias, F. J. Pitossi and C. C. Ferrari (2015). "Chronic systemic IL-1beta exacerbates central neuroinflammation independently of the blood-brain barrier integrity." J Neuroimmunol 278: 30-43.

Nakano, Y., E. Furube, S. Morita, A. Wanaka, T. Nakashima and S. Miyata (2015). "Astrocytic TLR4 expression and LPS-induced nuclear translocation of STAT3 in the sensory circumventricular organs of adult mouse brain." J Neuroimmunol 278: 144-158.

Noh, H., J. Jeon and H. Seo (2014). "Systemic injection of LPS induces region-specific neuroinflammation and mitochondrial dysfunction in normal mouse brain." Neurochem Int 69: 35-40.

Oby, E. and D. Janigro (2006). "The blood-brain barrier and epilepsy." Epilepsia 47(11): 1761-1774.

Pachter, J. S., H. E. de Vries and Z. Fabry (2003). "The blood-brain barrier and its role in immune privilege in the central nervous system." J Neuropathol Exp Neurol 62(6): 593-604.

Panayiotopoulos, C. P. (2012). "The new ILAE report on terminology and concepts for the organization of epilepsies: critical review and contribution." Epilepsia 53(3): 399-404.

Patel, M., Q. Y. Li, L. Y. Chang, J. Crapo and L. P. Liang (2005). "Activation of NADPH oxidase and extracellular superoxide production in seizure-induced hippocampal damage." J Neurochem 92(1): 123-131.

Pecorelli, A., F. Natrella, G. Belmonte, C. Miracco, F. Cervellati, L. Ciccoli, A. Mariottini, R. Rocchi, G. Vatti, A. Bua, R. Canitano, J. Hayek, H. J. Forman and G. Valacchi (2015). "NADPH oxidase activation and 4-hydroxy-2-nonenal/aquaporin-4 adducts as possible new players in oxidative neuronal damage presents in drug-resistant epilepsy." Biochim Biophys Acta 1852(3): 507-519.

Prasad, R., Anil, O. P. Mishra, S. P. Mishra, R. S. Upadhyay and T. B. Singh (2012). "Oxidative stress in children with neurocysticercosis." Pediatr Infect Dis J 31(10): 1012-1015.

Puttachary, S. and S. Sharma (2015). "Seizure-Induced Oxidative Stress in Temporal Lobe Epilepsy." 2015: 745613.

Quirico-Santos, T., I. D. Meira, A. C. Gomes, V. C. Pereira, M. Pinto, M.
Monteiro, J. M. Souza and S. V. Alves-Leon (2013). "Resection of the epileptogenic lesion abolishes seizures and reduces inflammatory cytokines of patients with temporal lobe epilepsy." J Neuroimmunol 254(1-2): 125-130.

Racine, R. J. (1972). "Modification of seizure activity by electrical stimulation. II. Motor seizure." Electroencephalogr Clin Neurophysiol 32(3): 281-294.

Rauca, C., I. Wiswedel, R. Zerbe, G. Keilhoff and M. Krug (2004). "The role of superoxide dismutase and alpha-tocopherol in the development of seizures and kindling induced by pentylenetetrazol - influence of the radical scavenger alpha-phenyl-N-tert-butyl nitrone." Brain Res 1009(1-2): 203-212.

Rauchhaus, M., et al. (2000). "Plasma cytokine parameters and mortality in patients with chronic heart failure." Circulation 102(25): 3060-3067.

Ravizza, T., B. Gagliardi, F. Noe, K. Boer, E. Aronica and A. Vezzani (2008). "Innate and adaptive immunity during epileptogenesis and spontaneous seizures: evidence from experimental models and human temporal lobe epilepsy." Neurobiol Dis 29(1): 142-160.

Riazi, K., M. A. Galic and A. C. Kentner (2015). "Microglia-dependent alteration of glutamatergic synaptic transmission and plasticity in the hippocampus during peripheral inflammation." 35(12): 4942-4952.

Riazi, K., M. A. Galic, J. B. Kuzmiski, W. Ho, K. A. Sharkey and Q. J. Pittman (2008). "Microglial activation and TNFalpha production mediate altered CNS excitability following peripheral inflammation." Proc Natl Acad Sci U S A 105(44): 17151-17156.

Riazi, K., M. A. Galic and Q. J. Pittman (2010). "Contributions of peripheral inflammation to seizure susceptibility: cytokines and brain excitability." Epilepsy Res 89(1): 34-42.

Rojas, A., J. Jiang, T. Ganesh, M. S. Yang, N. Lelutiu, P. Gueorguieva and R. Dingledine (2014). "Cyclooxygenase-2 in epilepsy." Epilepsia 55(1): 17-25.

Rowley, S. and M. Patel (2013). "Mitochondrial involvement and oxidative stress in temporal lobe epilepsy." Free Radic Biol Med 62: 121-131.

Santos, L. F., R. L. Freitas, S. M. Xavier, G. B. Saldanha and R. M. Freitas (2008). "Neuroprotective actions of vitamin C related to decreased lipid peroxidation and increased catalase activity in adult rats after pilocarpine-induced seizures." Pharmacol Biochem Behav 89(1): 1-5.

Sharma, N. and B. Nehru (2015). "Characterization of the lipopolysaccharide induced model of Parkinson's disease: Role of oxidative stress and neuroinflammation." Neurochem Int 87: 92-105.

Shridas, P., L. Zahoor, K. J. Forrest, J. D. Layne and N. R. Webb (2014). "Group X secretory phospholipase A2 regulates insulin secretion through a cyclooxygenase-2-dependent mechanism." J Biol Chem 289(40): 27410-27417.

Shurtz-Swirski, R., S. Sela, A. T. Herskovits, S. M. Shasha, G. Shapiro, L. Nasser and B. Kristal (2001). "Involvement of peripheral polymorphonuclear leukocytes in oxidative stress and inflammation in type 2 diabetic patients." Diabetes Care 24(1): 104-110.

Silverman, H. A., M. Dancho, A. Regnier-Golanov, M. Nasim, M. Ochani, P. S. Olofsson, M. Ahmed, E. J. Miller, S. S. Chavan, E. Golanov, C. N. Metz, K. J. Tracey and V. A. Pavlov (2014). "Brain Region-specific Alterations in the Gene Expression of Cytokines, Immune Cell Markers and Cholinergic System Components During Peripheral Endotoxin-induced Inflammation." Mol Med. 20(1): 601-11.

Streit, W. J., R. E. Mrak and W. S. Griffin (2004). "Microglia and neuroinflammation: a pathological perspective." J Neuroinflam 1(1): 14.

Sudha, K., A. V. Rao and A. Rao (2001). "Oxidative stress and antioxidants in epilepsy." Clin Chim Acta 303(1-2): 19-24.

Suh, J., E. Sinclair, J. Peterson, E. Lee, T. C. Kyriakides, F. Y. Li, L. Hagberg, D. Fuchs, R. W. Price, M. Gisslen and S. Spudich (2014). "Progressive increase in central nervous system immune activation in untreated primary HIV-1 infection." J Neuroinflam 11(1): 199.

Tain, Y. L., G. Freshour, A. Dikalova, K. Griendling and C. Baylis (2007). "Vitamin E reduces glomerulosclerosis, restores renal neuronal NOS, and suppresses oxidative stress in the 5/6 nephrectomized rat." Am J Physiol Renal Physiol 292(5): F1404-1410.

Takei, S., S. Hasegawa-Ishii, A. Uekawa, Y. Chiba, H. Umegaki, M. Hosokawa, D. F. Woodward, K. Watanabe and A. Shimada (2012). "Immunohistochemical demonstration of increased prostaglandin F(2)alpha levels in the rat hippocampus following KA-induced seizures." Neuroscience 218: 295-304.

Tan, C. C., J. G. Zhang, M. S. Tan, H. Chen, D. W. Meng, T. Jiang, X. F. Meng, Y. Li, Z. Sun, M. M. Li, J. T. Yu and L. Tan (2015). "NLRP1 inflammasome is activated in patients with medial temporal lobe epilepsy and contributes to neuronal pyroptosis in amygdala kindling-induced rat model." J Neuroinflam 12(1): 18.

Teocchi, M. A., A. E. Ferreira, E. P. da Luz de Oliveira, H. Tedeschi and L. D'Souza-Li (2013). "Hippocampal gene expression dysregulation of Klotho, nuclear factor kappa B and tumor necrosis factor in temporal lobe epilepsy patients." J Neuroinflam 10: 53.

Tollner, B., J. Roth, B. Storr, D. Martin, K. Voigt and E. Zeisberger (2000). "The role of tumor necrosis factor (TNF) in the febrile and metabolic responses of rats to intraperitoneal injection of a high dose of lipopolysaccharide." Pflugers Arch 440(6): 925-932.

Tome Ada, R., C. M. Feitosa and R. M. Freitas (2010). "Neuronal damage and memory deficits after seizures are reversed by ascorbic acid?" Arq Neuropsiquiatr 68(4): 579-585.

Turrin, N. P., D. Gayle, S. E. Ilyin, M. C. Flynn, W. Langhans, G. J. Schwartz and C. R. Plata-Salaman (2001). "Proinflammatory and anti-inflammatory cytokine mRNA induction in the periphery and brain following intraperitoneal administration of bacterial lipopolysaccharide." Brain Res Bull 54(4): 443-453.

Vezzani, A., E. Aronica, A. Mazarati and Q. J. Pittman (2013). "Epilepsy and brain inflammation." Exp Neurol 244: 11-21.

Vezzani, A., S. Balosso and T. Ravizza (2008). "The role of cytokines in the pathophysiology of epilepsy." Brain Behav Immun 22(6): 797-803.

Wang, W. Y., et al. (2015). "Role of proinflammatory cytokines released from microglia in Alzheimer's disease." Ann Transl Med 3(10): 136.

Wang, X., W. Wang, L. Li, G. Perry, H. G. Lee and X. Zhu (2014). "Oxidative stress and mitochondrial dysfunction in Alzheimer's disease." Biochim Biophys Acta 1842(8): 1240-1247.

Warner, T. A., J. Q. Kang, J. A. Kennard and F. E. Harrison (2015). "Low brain ascorbic acid increases susceptibility to seizures in mouse models of decreased brain ascorbic acid transport and Alzheimer's disease." Epilepsy Res 110: 20-25.

Wiebe, S. (2000). "Epidemiology of temporal lobe epilepsy." Can J Neurol Sci 27 Suppl 1: S6-10; discussion S20-11.

Wu, K. L., S. H. H. Chan and J. Y. H. Chan (2012). "Neuroinflammation and oxidative stress in rostral ventrolateral medulla contribute to neurogenic hypertension induced by systemic inflammation." J Neuroinflam 9(1): 212.

Xia, M. X., X. Ding, J. Qi, J. Gu, G. Hu and X. L. Sun (2014). "Inhaled budesonide protects against chronic asthma-induced neuroinflammation in mouse brain." J Neuroimmunol 273(1-2): 53-57.

Yamada, S., M. Taniguchi, M. Tokumoto, J. Toyonaga, K. Fujisaki, T. Suehiro, H. Noguchi, M. Iida, K. Tsuruya and T. Kitazono (2012). "The antioxidant tempol ameliorates arterial medial calcification in uremic rats: important role of oxidative stress in the pathogenesis of vascular calcification in chronic kidney disease." J Bone Miner Res 27(2): 474-485.

Yokoyama, H., N. Mori, K. Osonoe, S. Ishida and H. Kumashiro (1992). "Anticonvulsant effect of liposome-entrapped superoxide dismutase in amygdaloid-kindled rats." Brain Res 572(1-2): 273-275.

Zhang, L., Y. Guo, H. Hu, J. Wang, Z. Liu and F. Gao (2015). "FDG-PET and NeuN-GFAP immunohistochemistry of hippocampus at different phases of the pilocarpine model of temporal lobe epilepsy." Int J Med Sci 12(3): 288-294.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code