Responsive image
博碩士論文 etd-0720115-161320 詳細資訊
Title page for etd-0720115-161320
論文名稱
Title
以分子束磊晶法於氧化鎂與鋁酸鋰基板上成長摻銅氧化鋅磊晶 的研究
Molecular beam epitaxy growth of Cu-doped ZnO on MgO and LiAlO2 substrate
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
162
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-08-18
繳交日期
Date of Submission
2015-08-31
關鍵字
Keywords
分子束磊晶、非極性摻銅氧化鋅、氧化鎂、霍爾效應、光致螢光
Hall effect, non-polar Cu-doped ZnO, molecular beam epitaxy, photoluminescence, MgO
統計
Statistics
本論文已被瀏覽 5720 次,被下載 297
The thesis/dissertation has been browsed 5720 times, has been downloaded 297 times.
中文摘要
本研究探討在非極性氧化鋅磊晶摻雜銅對其電性與螢光發光特性的影響。氧化鋅磊晶係以分子束磊晶法生長於鋰酸鋁(LiAlO2, LAO)與氧化鎂(MgO)基板上,藉由調變銅蒸鍍源溫度,控制銅的摻雜量。之後以X光繞射分析摻銅氧化鋅的結晶方位與磊晶品質,X光光電子能譜儀(XPS)分析銅在氧化鋅磊晶中的鍵結型態與摻雜量,掃描式電子顯微鏡(SEM)觀察磊晶表面形貌,光致螢光光譜(PL)分析螢光發光特性,四點探針法與霍爾效應量測電阻率、載子種類、載子濃度與載子遷移率。
在LAO基板上成長的摻銅氧化鋅,其X光繞射結果顯示為具有[0001]//ND集合組織的多晶薄膜,表面形貌呈現粗糙波浪狀條紋,PL光譜顯示氧化鋅的近能隙邊緣發光(Near-band-edge emission, NBE)強度非常微弱。在MgO基板上成長的氧化鋅與摻銅氧化鋅薄膜,其X光繞射結果顯示為[101 ̅0]//ND (m-plane)的氧化鋅磊晶,Rocking curve半高寬介於0.7o~1.4o,表面形貌呈現具有特定結晶方向的長條紋區塊,為m-plane氧化鋅的異向性特徵。PL光譜顯示摻銅氧化鋅磊晶的NBE發光強度高於氧化鋅多晶薄膜,係由三個副峰組成,位於3.29 eV的發光峰為自由激子,3.19 eV的發光峰為基面疊差產生,而3.25 eV的發光峰則與銅摻雜關係密切,可能是一個束縛受體激子的發光峰。
XPS分析顯示銅蒸鍍源溫度低於900oC時,銅傾向以Cu+鍵結型態存在於氧化鋅中。銅蒸鍍源溫度在400oC~800oC之間,磊晶中的銅含量介於2x1018~3x1020 atoms/cm3之間。霍爾效應量測結果顯示,未摻雜的純氧化鋅磊晶與摻銅氧化鋅磊晶皆為n型半導體,純氧化鋅磊晶的電子濃度約為1x1018 cm-3,在摻雜銅之後,氧化鋅的電子濃度下降為5x1015~5x1016 cm-3,顯示摻雜的銅為替代型的Cu+,因此產生受體能階,是由於並非所有的摻雜銅均可有效的產生受體能階,因此仍不足以將氧化鋅轉換為p型半導體。在氧氣或氫氣中退火後,試片的電子濃度上升至7x1017~2x1018 cm-3,與未摻雜的氧化鋅類似,伴隨PL分析,退火後,3.25 eV的發光峰消失,顯示Cu+可能轉為Cu+2,導致受體能階消失。此外,本實驗的摻雜範圍內並未造成黃綠光螢光強度大幅上升。四點探針法量測顯示摻銅氧化鋅磊晶的電阻率為10-1~100 Ωcm,電子遷移率約為50 cm2V-1s-1。
Abstract
This work studied the electric and luminescent properties of Cu-doped ZnO epilayer films and epilayer that have been grown on LAO (LiAlO2) and MgO substrates, respectively, by plasma-assisted molecular beam epitaxy. The doping quantity was controlled by regulating Cu Kundsen cell temperature.The crystallinity of the Cu-doped ZnO films and epilayer were characterized by high resolution X-ray diffraction (HRXRD). The surface morphology was observed by scanning electron microscopy (SEM). The chemical state and elemental compositions was analyzed by X-ray photoelectron spectroscopy (XPS). Finally, the near-band-edge emission (NBE) and the defect-related emission (DLE) were analyzed by photoluminescence (PL) spectroscopy. The electric properties were determined by Hall measurement and four-point probe measurement.
The experimental results revealed ZnO films grown on LAO substrates were polycrystalline and have a [0001]//ND textured ZnO with a wavy surface. PL spectra exhibited extremely low intensity of NBE peaks. On the other hand, ZnO was grown epitaxially on MgO substrate with (101 ̅0)ZnO//(100)MgO. The full width at half maximum (FWHM) of the (101 ̅0)ZnO X-ray rocking curve were in the range of 0.7o~1.4o. The m-plane ZnO epilayers exhibit a typical stripe morphology
The intensity of the NBE peak of the epitaxial ZnO is much higher than that of the polycrystalline ZnO. Furthermore, the NBE peak of the epitaxial Cu-doped ZnO can be deconvoluted into three sub-peaks: a free exciton emission (FX) at 3.29 eV, a basal plane stacking fault emission (I1 BSF) at 3.19 eV, and a third peak at 3.25 eV. The third peak might be related to an acceptor-bound excitons (AoX) due to the doping of copper.
The XPS analysis showed the copper atoms have a monovalent state in the ZnO layers grown at Cu Kundsen cell temperatures lower than 900oC. The amount of Cu incorporation increased from 2x1019 to 3x1020 atoms/cm3.
Hall measurement indicated that both pure and Cu-doped ZnO epilayers are n-type semiconductor. The electron concentration of pure ZnO epilayer is 1x1018 cm-3. Whereas that of the Cu-doped ZnO epilayers are in the range of 5x1015~5x1016 cm-3. Obviously, the electron concentration of ZnO is compensated by the substitution of Cu+ to Zn2+ which generates acceptor levels. However, the electron concentration of the Cu-doped ZnO epilayers rose to the order of magnitudes 1018 cm-3 after annealed in oxygen or hygrogen, indicating the acceptor states were eliminated. Moreover, in this study, copper doped into ZnO does not increase of the yellow-green luminescence.
Four-point probe measurement given the resistivity of Cu-doped ZnO epilayers which grown at Cu Kundsen cell temperature 400oC~800oC were in the range of 10-1~100 Ωcm, corresponding to an electron mobility of ~50 cm2V-1s-1.
目次 Table of Contents
論文審定書 i
誌 謝 ii
摘 要 iii
Abstract v
總目錄 vii
表目錄 x
圖目錄 xii
第一章 緒論 1
第二章 理論基礎與文獻回顧 4
2.1分子束磊晶原理 4
2.2分子束磊晶系統 6
2.2.1泵浦 6
2.2.2真空計 7
2.2.3電漿系統 8
2.2.4分析儀器 8
2.2.5分子束磊晶法參數 8
2.3磊晶成核與成長機制 9
2.3.1成核 10
2.3.2表面自由能與成長模式 11
2.3.3晶格失配與成長模式 12
2.4磊晶基板 13
2.4.1藍寶石基板 13
2.4.2鋁酸鋰基板 13
2.4.3鎵酸鋰基板 14
2.4.4氧化鎂基板 14
2.5分子束磊晶法成長氧化鋅磊晶 15
2.5.1氧化鋅簡介 15
2.5.2非極性氧化鋅特性 15
2.5.3分子束磊晶法成長非極性氧化鋅 16
2.6 p型氧化鋅半導體 20
2.6.1氧化鋅缺陷 20
2.6.2 p型氧化鋅摻雜物 21
2.6.3 p型摻銅氧化鋅 23
第三章、實驗方法 29
3.1磊晶基板前處理 29
3.2實驗參數設計與摻銅氧化鋅磊晶成長 29
3.3實驗分析 31
第四章、實驗結果 35
4.1 LAO與MgO基板前處理與分析 35
4.1.1 LAO基板表面分析 35
4.1.2 MgO基板表面前處理與分析 35
4.2 LAO基板成長摻銅氧化鋅分析 36
4.2.1高解析X光繞射分析 36
4.2.2掃描式電子顯微鏡分析 36
4.2.3 X光光電子能譜儀分析 37
4.2.4室溫光致螢光光譜分析 37
4.3 MgO基板成長摻銅氧化鋅磊晶分析 38
4.3.1高解析X光繞射分析 38
4.3.2掃描式電子顯微鏡與原子力顯微鏡分析 40
4.3.3 X光光電子能譜儀分析 41
4.3.4銅分子束的等效蒸氣壓量測與銅含量計算 42
4.3.5霍爾效應與四點探針法量測 43
4.3.6室溫光致螢光光譜分析 45
第五章、討論 47
5.1在LAO基板成長摻銅氧化鋅 47
5.2在MgO基板成長摻銅氧化鋅 47
5.3 Kundsen evaporation flux equation與XPS定量分析銅含量 48
5.4非極性摻銅氧化鋅磊晶的電性量測與PL發光特性 48
第六章、結論 51
參考文獻 53
參考文獻 References
[1] N. Holonyak and S. F. Bevacqua, Coherent (visible) light emission from Ga(As1− xPx) junctions, Appl. Phys. Lett., 1 (1962) 82.
[2] GaN-based blue light emitting device development by Akasaki and Amano, Takeda Award 2002 Achievement Facts Sheet, The Takeda Foundation April 5, 2002.
[3] S. Nakamura, T. Mukai, and M. Senoh, Candelaclass high brightness InGaN/AlGaN double heterostructure blue light emitting diodes, Appl. Phys. Lett., 64 (1994) 1687.
[4] J.C. Fan et al., p-type ZnO materials: Theory, growth, properties and devices, Prog. Mater. Sci., 58 (2013) 874-985.
[5] Y. S. Choi et al., Recent Advances in ZnO-Based Light-Emitting Diodes, IEEE T. Electron Dev., 57 (2010) 26-41.
[6] T. Koyama and S. F. Chichibu, Importance of lattice matching and surface arrangement for the helicon-wave-excited-plasma sputtering epitaxy of ZnO, Appl. Phys. Lett., 95 (2004) 7856-7861.
[7] C. H. Chen, J. Y. Yu, T. H. Huang, L. W. Chang and M. M. C. Chou, Epitaxial Growth of ZnO on LiAlO2 and LiGaO2 Substrates by Chemical Vapor Deposition, ECS Transactions, 28 (2010) 33-44.
[8] W. Chen, X. H. Pan, H. H. Zhang, Z. Z. Ye, P. Ding, S. S. Chen, J. Y. Huang, B. Lu, Small valence band offsets of non-polar ZnO/Zn1-xMgxO heterojunctions measured by X-ray photoelectron spectroscopy, Phys Lett A, 378 (2014) 2312–2316.
[9] Y. F. Lai, J. H. Huang, Y. C. Chen, C. P. Liu, Y. W. Yang, Growth of large-area non-polar ZnO film without constraint to substrate using oblique-angle sputtering deposition, J. Euro. Ceram. Soc., 33 (2013) 1809-1814.
[10] 林正偉,氮化處理的鋁酸鋰與鎵酸鋰基板上分子束磊晶成長氧化鋅的研究,國立中山大學材料與光電科學學系碩士論文,(2014)。
[11] Y. M. Chen, T. H. Huang, T. Yan, L. Chang, M.M.C.Chou, K.H.Ploog, C.-M.Chiang, Epitaxial growth of nonpolar and polar ZnO on γ-LiAlO2 (100)substrate by plasma-assisted molecular beam epitaxy, J. Cryst. Growth, 377 (2013) 82-87.
[12] 陳彥名,以分子束磊晶法於鋁酸鋰基板成長非極性氧化鋅磊晶之研究,國立中山大學材料與光電科學學系碩士論文,(2012)。
[13] T. Huang, S. Zhou, H. Teng, H. Lin, J. Wang, P. Han and R. Zhang, Growth and characterization of ZnO films on (001), (100) and (010) LiGaO2 substrates, J. Cryst. Growth, 310 (2008) 3144-3148.
[14] C.-Y.J. Lu, L.Chang, K.H.Ploog, M.M.C.Chou, Epitaxial growth of nonpolar ZnO on MgO (100) substrate by molecular beam epitaxy, J. Cryst. Growth, 378 (2013) 172-176.
[15] E. Cagin, J. Yang, W. Wang, J. D. Phillips, S. K. Hong, J. W. Lee and J. Y. Lee, Growth and structural properties of m-plane ZnO on MgO (001) by molecular beam epitaxy, Appl. Phys. Lett., 92 (2008) 233505.
[16] R. Deng, B. Yao, Y.F. Li, B.H. Li, Z.Z. Zhang, H.F. Zhao, J.Y. Zhang, D.X. Zhao, D.Z. Shen, X.W. Fan, L.L. Yang, Q.X. Zhao, Surface morphology, structural and optical properties of polar and non-polar ZnO thin films: A comparative study, J. Cryst. Growth, 311 (2009) 4398-4401.
[17] U. Özgür, Y. I. Alivov., C. Liu, A. Teke, M. Reshchikov, S. Doğan, A comprehensive review of ZnO materials and devices, J. Appl. Phys., 98 (2005) 041301.
[18] H. L. Pan, B. Yao, T. Yang, Y. Xu, B. Y. Zhang, W. W. Liu, D. Z. Shen, Electrical properties and stability of p-type ZnO film enhanced by alloying with S and heavy doping of Cu, Appl. Phys. Lett., 97 (2010) 142101.
[19] Y. Yan, M. M. Al-Jassim, S. H. Wei, Doping of ZnO by group-IB elements, Appl. Phys. Lett., 89 (2006)181912.
[20] J. C. Vickerman, I. S. Gilmore, Surface Analysis - The Principal Techniques, 2nd Ed., New York, Wiley (2009).
[21] M. A. Herman and H. Sitter, Molecular Beam Epitaxy: Fundamentals and Current Status, Berlin, Springer (1996).
[22] M. Henini, Molecular Beam Epitaxy From Research to Mass Production, Oxford Paris, Elsevier (2013).
[23] 呂政穎,分子束磊晶法成長氧化鋅之研究,國立中山大學材料與光電科學學系碩士論文,(2009)。
[24] P. Bhattacharya, R. Fornari, H. Kamimura, Comprehensive Semiconductor Science and Technology, Elsevier (2011) 480-522.
[25] J. E. Ayers, Heteroepitaxy of Semiconductors: Theory, Growth, and Characterization, New York CRC, Press, (2006).
[26] K. N. Tu, J. W. Mayer and L. C. Feldman, Electronic thin film science: for electrical engineers and materials scientists, Macmillan, New York, (1992).
[27] M. Marezio, The crystal structure and anomalous dispersion of γ-LiAlO2, Acta Crystallogr., 19 (1965) 396-400.
[28] M. M. C. Chou, L. W. Chang, H. Y. Chung, T. H. Huang, J. J. Wu, C. W. Chen, Growth and characterization of nonpolar ZnO (101 ̅0) epitaxial film on γ-LiAlO2 substrate by chemical vapor deposition, J. Cryst. Growth, 308 (2007) 412-416.
[29] M. M.C. Chou, L. W. Chang, D. R. Hang, C. L. Chen, D. S. Chang, and C. A. Li, Crystal Growth of Nonpolar m-Plane ZnO on a Lattice-Matched (100) γ-LiAlO2 Substrate, Cryst. Growth Des 9 (2009) 2073-2078.
[30] M. Marezio, The Crystal Structure of LiGaO2, Acta Crystallogr., 18 (1965) 481-484.
[31] T. Ishii, Y. Tazoh, S. Miyazawa, Single-crystal growth of LiGaO2 for a substrate of GaN thin films, J. Cryst. Growth, 186 (1998) 409-419.
[32] H. Morkoc, U. Özgur, Zinc Oxide - Fundamentals, Materials and Device Technology, Wiley, Berlin, (2009).
[33] S. K. Han, S. K. Hong, J. W. Lee, J. G. Kim, M. Jeong, J. Y. Lee, S. I. Hong, J. S. Park, Y. E. Ihm, J. S. Ha, T. Yao, Properties of (11-20) a-plane ZnO films on sapphire substrates grown at different temperatures by plasma-assisted molecular beam epitaxy, Thin Solid Films, 519 (2011) 6394-6398.
[34] X. Pan, P. Ding, H. He, J. Huang, B. Lu, H. Zhang, Z. Ye, Optical properties and structural characteristics of ZnO thin films grown on a-plane sapphire substrates by plasma-assisted molecular beam epitaxy, P Soc Photo-Opt Ins, 285 (2012) 4431-4434.
[35] X. H. Wei et al., Epitaxial properties of ZnO thin films on SrTiO3 substrates grown by laser molecular beam epitaxy, Appl. Phys. Lett., 90 (2007) 151918.
[36] Y. T. Ho,W. L. Wang, C. Y. Peng, M.H. Liang, J. S. Tian, C.W. Lin and L. Chang, Growth of nonpolar (11-20) ZnO films on LaAlO3 (001) substrates, Appl. Phys. Lett., 93 (2008) 121911.
[37] T. H. Huang, W. H. Lin, J. J. Wu, M. M. C. Chou, T. Yan and L. Chang, Microstructure Characterization of Nonpolar ZnO and Zn1-xMgxO Epilayers Grown on (100) γ-LiAlO2 by Chemical Vapor Depositions, ECS Transactions, 45 (2012) 63.
[38] Y. J. Kim, Y. T. Kim, H. K. Yang, J. C. Park, J. I. Han, Y. E. Lee and H. J. Kim, Epitaxial growth of ZnO thin films on R-plane sapphire substrate by radio frequency magnetron sputtering, J. Vac. Sci. Technol. A, 15 (1997) 1103.
[39] T. Koida, S. F. Chichibu, A. Uedono, T. Sota, A. Tsukazaki and M. Kawasaki, Radiative and nonradiative excitonic transitions in nonpolar (11-20) and polar (000-1) and (0001) ZnO epilayers, Appl. Phys. Lett., 84 (2004) 1079.
[40] M. M. C. Chou, D. R. Hang, C. L. Chen, Y. H. Liao, Epitaxial growth of nonpolar m-plane ZnO (101 ̅0) on large-size LiGaO2 (100) substrates, Thin Solid Films, 519 (2011) 3627-3631.
[41] C.Y. Lee, C. L. Chen, L. W. Chang, M. M. C. Chou, Growth of nonpolar ZnO Films on (100) β-LiGaO2 substrate by molecular beam epitaxy, J. Cryst. Growth, 407 (2014) 11-16.
[42] A. Tsukazaki, M. Kubota, A. Ohtomo, T. Onuma, K. Ohtani, H. Ohno, S. F. Chichibu and M. Kawasaki, Blue light-emitting diode based on ZnO, Jpn. J. Appl. Phys., 44 (2005) L643.
[43] D. K. Hwang, S. H. Kang, J. H. Lim, E. J. Yang, J. Y. Oh, J. H. Yang and S. J. Park, p-ZnO/n-GaN heterostructure ZnO light-emitting diodes, Appl. Phys. Lett., 86 (2005) 222101.
[44] F. Oba, S. R. Nishitani, S. Isotani, H. Adachi and I. Tanaka, Energetics of native defects in ZnO, J. Appl. Phys., 90 (2001) 824.
[45] M. D. McCluskey and S. J. Jokela, Defects in ZnO, Appl. Phys. Lett., 106 (2009) 071101.
[46] A. Janotti and C. G. Van de Walle, Fundamentals of zinc oxide as a semiconductor, Rep. Prog. Phys., 72 (2009) 126501.
[47] S. B. Zhang, S. H. Wei, and A. Zunger, Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO, Phys. Rev. B, 63 (2001) 075205.
[48] B. Lin, Z. Fu and Y. Jia, Green luminescent center in undoped zinc oxide films deposited on silicon substrates, Appl. Phys. Lett., 79 (2001) 943-945.
[49] Z. Fu, B. Lin, G. Liao and Z. Wu, The effect of Zn buffer layer on growth and luminescence of ZnO films deposited on Si substrates, J. Cryst. Growth, 193 (1998) 316-321.
[50] K. Ogata, K. Sakurai, Sz Fujita, Sg Fujita, K. Matsushige, Effects of thermal annealing of ZnO layers grown by MBE, J. Cryst. Growth, 214/215 (2000) 312-315.
[51] P. Ding, X. Pan, J. Huang, B. Lu, H. Zhang, W. Chen, Z. Ye, Growth of p-type a-plane ZnO thin films on r-plane sapphire substrates by plasma-assisted molecular beam epitaxy, Mater. Lett., 71 (2012) 18-20.
[52] Y. J. Zeng, Z. Z. Ye, W. Z. Xu, J. G. Lu, H. P. He, L. P. Zhu, B. H. Zhao, Y. Che and S. B. Zhang, p-type behavior in nominally undoped ZnO thin films by oxygen plasma growth, Appl. Phys. Lett., 88 (2006) 262103.
[53] D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, G. Cantwell, Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy. Appl. Phys. Lett., 81 (2002) 1830.
[54] H. W. Liang, Y. M. Lu, D. Z. Shen, Y. C. Liu, J. F. Yan, C. X. Shan, B. H. Li, Z. Z. Zhang, J. Y. Zhang and X. W. Fan, P-type ZnO thin films prepared by plasma molecular beam epitaxy using radical NO, physica status solidi(a), 202 (2005) 1060-1065.
[55] J. C. Sun, H. W. Liang, J. Z. Zhao, J. M. Bian, Q. J. Feng, L. Z. Hu, H. Q. Zhang, X. P. Liang, Y. M. Luo, G. T. Du, Ultraviolet electroluminescence from n-ZnO:Ga/p-ZnO:N homojunction device on sapphire substrate with p-type ZnO:N layer formed by annealing in N2O plasma ambient, Chem. Phys. Lett., 460 (2008) 548-551.
[56] M. S. Oh, D. K. Hwang, Y. S. Choi, J. W. Kang, S. J. Park, C. S. Hwang and K. I. Cho, Microstructural properties of phosphorus-doped p-type ZnO grown by radio-frequency magnetron sputtering, Appl. Phys. Lett., 93 (2008) 111905.
[57] F. X. Xiu, Z. Yang, L. J. Mandalapu, and J. L. Liu, Donor and acceptor competitions in phosphorus-doped ZnO, Appl. Phys. Lett., 88 (2006) 152116.
[58] S.P. Wang, C.X. Shan, B.H. Li, J.Y. Zhang, B. Yao, D.Z. Shen, X.W. Fan, A facile route to arsenic-doped p-type ZnO films, J. Cryst. Growth, 311 (2009) 3577-3580.
[59] Y. C. Huang, L. W. Weng, W. Y. Uen, S. M. Lan, Z. Y. Li, S. M. Liao, T. Y. Lin, T. N. Yang, Annealing effects on the p-type ZnO films fabricated on GaAs substrate by atmospheric pressure metal organic chemical vapor deposition, J. Alloy. Compd., 509 (2011) 1980-1983.
[60] Y. C. Cheng, Y. S. Kuo, Y. H. Li, J. J. Shyue, M. J. Chen, Stable p-type ZnO films grown by atomic layer deposition on GaAs substrates and treated by post-deposition rapid thermal annealing, Thin Solid Films, 519 (2011) 5558–5561.
[61] L. J. Mandalapu, F. X. Xiu, Z. Yang, D. T. Zhao, and J. L. Liu, p-type behavior from Sb-doped ZnO heterojunction photodiodes, Appl. Phys. Lett., 88 (2006) 112108.
[62] L. J. Mandalapu, Z. Yang, S. Chu, and J. L. Liu, Ultraviolet emission from Sb-doped p-type ZnO based heterojunction light-emitting diodes, Appl. Phys. Lett., 92 (2008) 122101.
[63] E. S. Kumar, J. Chatterjee, N. Rama, N. DasGupta and M. S. Rao, A codoping route to realize low resistive and stable p-type conduction in (Li,Ni):ZnO Thin films grown by pulsed laser deposition, ACS Applied Materials & Interfaces, 3 (2011) 1974-1979.
[64] H. S. Kang, B. D. Ahn, J. H. Kim, G. H. Kim, S. H. Lim, H. W. Chang and S. Y. Lee, Structural, electrical, and optical properties of p-type ZnO thin films with Ag dopant, Appl. Phys. Lett., 88 (2006) 202108.
[65] K. S. Ahn, T. Deutsch, Y. Yan, C. S. Jiang, C. L. Perkins, J. Turner and M. Al-Jassim, Synthesis of band-gap-reduced p-type ZnO films by Cu incorporation, J. Appl. Phys., 102 (2007) 023517.
[66] J. B. Kim, D. Byun, S. Y. Ie, D. H. Park, W. K. Choi, J. W. Choiand, B. Angadis, Cu-doped ZnO-based p–n hetero-junctionlight emitting diode, Semicond. Sci. Tech., 23 (2008) 095004.
[67] K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga and A. Shimizu, Growth of p-type zinc oxide films by chemical vapor deposition, Jpn. J. Appl. Phys., 36 (1997) L1453-L1455.
[68] A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki, Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO, Nat. Mater., 4 (2005) 42-46.
[69] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, T. Steiner, Recent progress in processing and properties of ZnO, Prog. Mater. Sci., 50 (2005) 293-340.
[70] R. D. Shannon, Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, Acta Crystallogr. A, 32 (1976) 751-767.
[71] X. P. Peng, J. H. Xu, H. Zang, B. Wang, Z. Wang, Structural and PL properties of Cu-doped ZnO films, J. Lumin., 128 (2008) 297-300.
[72] B. Kulyk, B. Sahraoui, V. Figa, B. Turko, V. Rudyk, V. Kapustianyk, Influence of Ag, Cu dopants on the second and third harmonic response of ZnO films, J. Alloy. Compd., 481 (2009) 819-825.
[73] C. X. Xu, X. W. Sun, X. H. Zhang, L. Ke and S. J. Chua, Photoluminescent properties of copper-doped zinc oxide nanowires, Institute of Physics Publishing Nanotechnology, 15(2004) 856–861.
[74] L. Ma, S. Ma, H. Chen, X. Ai, X. Huang, Microstructures and optical properties of Cu-doped ZnO films prepared by radio-frequency reactive magnetron sputtering, Appl. Surf. Sci., 257 (2011) 10036-10041.
[75] A. N. Gruzintsev, V. T. Volkoiv, I. I. Khodos, T. V. Nikiforova and M. N. Koval’chuk, Luminescent Properties of ZnO Films Doped with Group-IB Acceptors, Russian Microelectron, 31 (2002) 200.
[76] S. Y. Lee, N. Mettlach, N. Nguyen, Y. M. Sun, J. M. White, Copper oxide reduction through vacuum annealing, Appl. Surf. Sci., 206 (2003) 102-109.
[77] P. Fons, A. Yamada, K. Iwata, K. Matsubara, S. Niki, K. Nakahara, H. Takasu, An EXAFS and XANES study of MBE grown Cu-doped ZnO, Nucl. Instrum. Meth. B, 199 (2003) 190-194.
[78] M. K. Puchert, A. Hartmann, R. N. Lamb and J. W. Martin, Highly resistive sputtered ZnO films implanted with copper, J. Mater. Res., 11 (1996) 2463-2469.
[79] John P. Tobin, W. Hirschwald, J. Cunningham, XPS and XAES studies of transient enhancement of Cu at CuO surfaces during vacuum outgassing, Applications of Surface Science, 16 (1983) 441-452.
[80] W. H. Lin, U. Jahn, H. T. Grahn, L. W. Chang, M. M. C. Chou, and J. J. Wu, Spectral and Spatial Luminescence Distribution of m-Plane ZnO Epitaxial Films Containing Stacking Faults: A Cathodoluminescence Study, Appl. Phys. Expr., 6 (2013) 061101.
[81] N. Y. Garces, Role of copper in the green luminescence from ZnO crystals, Appl. Phys. Lett., 81 (2002) 622.
[82] Schorder D. K., Semiconductor Material and Device Characterization, 3rd Ed., New Jersey, Wiley (2005).
[83] P. Y. Yu, Fundamentals of Semiconductor, 3rd Ed., Berlin, Springer (2005).
[84] Y. Yan, G. M. Dalpian, M. M. Al-Jassim and S.-H. Wei, Energetics and electronic structure of stacking faults in ZnO, Phys. Rev. B, 70 (2004) 193206.
[85] S. K. Mohanta, A. Nakamura, and J. Temmyo, Nitrogen and copper doping in MgxZn1-xO films and their impact on p-type conductivity, J. Appl. Phys. 110 (2011) 013524.
[86] H. He, S. Li, L. Sun and Z. Ye, Hole traps and Cu-related shallow donors in ZnO nanorods revealed by temperature-dependent photoluminescence, Phys. Chem. Chem. Phys.,15 (2013) 7484-7487.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code