Responsive image
博碩士論文 etd-0720115-205712 詳細資訊
Title page for etd-0720115-205712
論文名稱
Title
二十二碳六烯酸在對抗K他命誘發的神經膠細胞毒性所扮演的角色
Role of Docosahexaenoic Acid against Ketamine-induced Gliotoxicity
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
56
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-31
繳交日期
Date of Submission
2015-08-20
關鍵字
Keywords
神經膠質細胞、K他命、二十二碳六烯酸、多元不飽和脂肪酸、凋亡
ketamine, DHA, p-Erk, NFκB, U87, p-Akt
統計
Statistics
本論文已被瀏覽 5701 次,被下載 737
The thesis/dissertation has been browsed 5701 times, has been downloaded 737 times.
中文摘要
Ketamine是一個常用於小兒麻醉的麻醉劑,更是時下青少年常見的濫用藥物,在動物模式ketamine證實會造成發育中幼鼠的腦神經細胞產生凋亡及日後行為異常。DHA屬於多元不飽和脂肪酸的一種,之前的文獻顯示DHA可以促進神經細胞的發育及抗凋亡的作用。本篇研究欲探討DHA是否具有抑制ketamine引起的神經膠瘤U87細胞死亡的作用。細胞存活分析發現ketamine具有劑量效應,濃度越高細胞存活率越低;DHA在濃度50μM以下(含)可以增加細胞存活率,50μM以上則會造成細胞死亡;DHA對中低劑量的ketamine具有保護效果,高劑量則沒有保護效果。而DHA產生保護效果時,可以觀察到p-AKT和p-ERK1/2表現量增加。Ketamine會造成p53、NFκB和BAX表現量增加,而經DHA治療後bcl-2呈現上升的情況。
Abstract
Ketamine is an anesthetic commonly used in pediatric anesthetic, but it is also a drug that young people today commonly abuse. In the animal model ketamine is shown to cause apoptosis and abnormal behavior in the brain cells of developing rats in the future. DHA belongs to one of the polyunsaturated fatty acids. Previous literature shows that DHA may promote the development of and resistance to apoptosis of nerve cells. This research essay investigates the effects of DHA has a role in U87 glial tumor cell death induced inhibition of ketamine. Cell survival analysis showed that ketamine's effect is dose-dependent. The higher the concentration, the lower the cell viability. DHA in concentration 50μM (inclusive) can increase cell survival, 50μM above will cause cell death; DHA has a protective effect to low doses of ketamine, no protective effect to high doses. And when the DHA produces a protective effect, it can be observed that p-AKT and p-ERK1/2 exhibit increased performance capacity. Ketamine can cause an increase in the amount of p53 , NFκB and BAX performance, and after DHA treatment bcl-2 are showing a upward trend.
目次 Table of Contents
目錄
論文審定書-----------------------------------------i

誌謝--------------------------------------------------ii

中文摘要 -------------------------------------------iii

英文摘要--------------------------------------------iv

第一章、前言----------------------------------------1-7

第二章、材料與方法-------------------------------8-16

第三章、結果----------------------------------------17-20

第四章、討論----------------------------------------21-23

參考文獻----------------------------------------------24-30

圖表----------------------------------------------------31-40

附錄----------------------------------------------------41-48
參考文獻 References
Bergman, S.A., 1999. Ketamine: review of its pharmacology and its use in pediatric anesthesia. Anesth.Prog. 46 (1),10-20.

Braun, S., Gaza, N., Werdehausen, R., Hermanns, H., Bauer, I., Durieux, M.E., Hollmann, M.W., Stevens, M. F., 2010. Ketamine induces apoptosis via the mitochondrial pathway in human lymphocytes and neuronal cells. British Journal of Anaesthesia. 105 (3), 347-354.

Burke, S.N., Maurer, A.P., Yang, Z., Navratilova, Z., Burnes, C.A., 2008. Glutamate receptor-mediated restoration of experience-dependent place field Expansion plasticity in aged rats. Behav. Neurosci. 122 (3), 535-548.

Burnouf, S., Martire, A., Derisbourg, M., Laurent, C., Belarbi, K.,Leboucher, A., Fenandez-Gomez, F.J., Troquier, L., Eddarkaoui, S., Grosjean, M.E., Demeyer, D., Muhr-Tailleux, A., Buisson, A., Sergeant, N., Hamdane, N., Humez, S., Popoli, P., Buee, L., Blum, D., 2013. NMDA receptor dysfunction contributed to impaired brain-derived neurotrophic factor-induced facilitation of hippocampal synaptic transmission in a Tau transgenic model. Aging cell.12 (1),11-23.

Cao, D, Xue, R., Xu, J., Liu, Z., 2005. Effects of docosahexaenoic acid on the survival and neurite outgrowth of rat cortical neurons in primary culture. J. Nutr. Biochem.16 (9), 538-546.

Crawford, M.A., Bloom, M., Broadhurst, C.L., Schmidt, W.F., Cunnane, S.C., Galli, C., Gehbremeskel, K., Linseisen, F., Lloyd-Smith, J., Parkington, J., 1999. Evidence for the unique function of docosahexaenoic acid during the evolution of the modern hominid brain. Lipids 34, S39-S47.

Davison, A.N., Dobbing, J., 1968. Applied Neurochemistry. Blackwell, Oxford, pp. 178-221, 253-316.

Djeballi, M., Rondouin, G., Baille, V.,Bockaert, J. 2000. P53 and Bax implication in NMDA induced-apoptosis in mouse hippocampus. Neuroreport. 11, 2973-76.

Faghiri, Z., Bazan, N.G., 2010. PI3K/Akt and mTOR/p70S6K pathways mediate neuroprotection D1-induced retinal pigment epithelial cell survival during oxidative stress-induced apoptosis. Exp. Eye Res.90 (6), 718-725.

Fredriksson, A., Poten, E., Gordh, T., Eriksson, P., 2007. Neonatal exposure to a combination of N-methyl-D-aspartate and gamma-aminobutyric acid type A receptor anesthetic agents potentiates apoptotic neurodegeneration and persistent behavioral deficits. Anesthesiology.107, 427-436.

Gamoh, S., Hashimoto, M., Sugioka, K., ShahdatHossain, M., Hata, N., Misawa, Y., Masumura, S.,1999. Chronic administration of docosahexaenoic acid improves reference memory-related learning ability in young rats. Neuroscience. 93, 237-241.

Haas, D.A., Harper, D.G., 1992. Ketamine: A review of its pharmacologic properties and use in ambulatory anesthesia. Anesth. Prog. 39, 61-68.

Harrison, N.L., Simmonds, M.A., 1985. Quantitative studies on some antagonists of N-methyl-D-aspartate in slices of rat cerebral cortex. Br. J. Phar- macol. 84, 381-391.

Hijazi, Y., Boulieu, R., 2002. Contribution of CYP3A4, CYP2B6, and CYP2C9 isoforms to N-methylation of ketamine in human liver microsomes. Drug Metab.Dispos. 30, 853-858.

Huang, L., Liu, Y., Jin, W., Ji, X., Dong, Z., 2012. Ketamine potentiates hippocampal neurodegeneration and persistent learning and memory impair -ment through the PKCγ-ERK signaling pathway in the developing brain. Brain Research. 1476, 164-171.

Huang, Y.J., Lin, C.H., Lane, H.Y., Tsai, G.E., 2012. NMDA neurotransmission dysfunction in behavioral and psychological symptoms of Alzheimer’s disease. Curr. Neuropharmacol. 10 (3), 272-285.

Jevtovic-Todorovic, V., Hartman, R.E., Izumi, Y., 2003.Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. 23, 876-882.

Jicha, G.A., Markesbery, W.R., 2010. Omega-3 fatty acids: potential role in the management of early Alzheimer’s disease. Clinical Interventions in Aging. 5, 45-61.

Joe Laidler, K.A., 2005. The rise of club drugs in a heroin society: The case of Hong Kong. Subst. Use Misuse. 40, 1257-1278.

Kim, H.Y., Akbar, M., Kim, K.Y., Lau, A., Edsall, L., 2000. Inhibition of neuronal apoptosis by docosahexaenoic acid (22:6n-3). Role of phosphatedylserine in antiapoptotic effect. J. Biol. Chem. 275 (45), 35215-35223.

Kolb, B., Whishaw, I.Q., 1989. Plasticity in the neocortex: mechanisms underlying recovery from early brain damage. Prog. Neurobiol. 32, 235-276.

Liu, T., Jiang, C.Y., Fujita, T., Luo, S.W., Kumamoto, E., 2013. Enhancement by interleukin-1 beta of MAPA and NMDA receptor-mediated currents in adult rat spinal superficial dorsal horn neurons. Mol. Pain. 9 (1), 9-26.

Mehta, A.K., Halder, S., Khanna, N., Tandon, O.P., Singh, U.R., Sharma, K.K., 2012. Role of NMDA and opioid receptors in neuropathic pain induced by chronic constriction injury of sciatic nerve in rats. J. Basic Clin. Physiol. Pharmacol. 23 (2), 49-55.

Sanders, E.M., Nguyen, M.A., Zhou, K.C., Hanks, M.E., Yusuf, K.A., Cox, D.N., Dumas, T.C., 2013. Development modification of synaptic NMDAR composition and maturation glutamatergic synapses: matching postsynaptic slots with receptor pegs. Biol. Bull. 224 (1), 1-13.

Shimoyama, M., Shimoyama, N., Gorman, A.L., Elliott, K.J., Inturrisi, C.E., 1999. Oral ketamine is antinociceptive in the rat formalin test: role of the metabolite, norketamine. Pain. 81, 85-93.

Singh, M., 2005. Essential fatty acids, DHA and human brain. Indian J. Pediatr. 72 (3), 239-242.

Strayer, R.J., Nelson, L.S., 2008. Adverse events associated with ketamine for procedural sedation in adults. Am. J. Emerg. Med. 26, 985-1028.

Petreko, A.B., Yamakura, T., Baba, H., Shimoji, K., 2003. The role of N- Methyl-D-Aspartate (NMDA) receptors in pain: a review. Anesth. Analg. 97, 1108-1116.

Uemura, E., Bowman, R. E.,1980. Effects of halothane on cerebral synaptic density. Exp. Neurol. 69, 135-42.

Uemura, E., Levin, E.D., Bowman, R.E., 1985. Effects of halothane on synaptogenesis and learning behavior in rats. Exp. Neurol. 89, 520-529.

Wu, H., Ichikawa, S., Tani, C., Zhu, B., Tada, M., Shimoishi, Y., 2009. Docosahexaenoic acid induces ERK1/2 activation and neuritogenesis via intracellular reactive oxygen species production in human neuroblastoma SH-SY5Y cells. Biochim. Biophys. Acta. 1791(1), 8-16.

Yoshida, S., Yasuda, A., Kawazato, H., Sakai, K., Shimada, T., Takeshita, M., Yuasa, S., Kobayashi, T., Watanabe, S., Okuyama, H., 1997.Synaptic vesicle ultrastructural changes in the rat hippocampus induced by a combination of α-linolenate deficiency and a learning task. J. Neurochem.68,1261-1268.

Yuan, Y., Wang, J.Y., Yuan, F., Xie, K.L., Yu, Y.H., Wang, G.L. 2013. Glycogen synthase kinase-3β contributes to remifentranil-induced postoperative hyperalgesia via regulating N-methyl-D-aspartate receptor trafficking. Anesth. Analg. 116 (2), 473-481.

Zhang, R.X., Yan, X.B., Gu, Y.H., Huang, D., Gan, L., Han, R., Huang, L.H. 2013. Gene silencing of NR2B-containing NMDA receptor by intrathecal injection of short harpin RNA reduces formalin-induced nociception in C57BL/6 mouse. Int. J. Neurosci. 123 (9), 650-656.

Zhang, Z.W., Peterson, M., Liu, H., 2013. Essential role of postsynaptic NMDA receptors in developmental refinement on excitatory synapses. Proc. Natl. Acad. Sci. 110 (3), 1095-1100.

Zou, X.J., Patterson, T.A., Sadovova, N., Twaddle, N.C., Doerge, D.R., Zha -ng, X., Fu, X., Hanig, J.P., Paule, M.G., Slikker, W., Wang, C., 2009. Poten -tial neurotoxicity of ketamine in the developing rat brain. Toxicol.Sci. 108 (1), 149-158.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code