Responsive image
博碩士論文 etd-0720116-115423 詳細資訊
Title page for etd-0720116-115423
論文名稱
Title
串並聯結合式饋入網路之60-GHz高增益寬頻孔縫耦合微帶天線陣列
Combination of Series and Parallel Feeding Network with 60-GHz High-Gain and Wideband Aperture Coupled Feed Patch Array
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
70
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-20
繳交日期
Date of Submission
2016-08-20
關鍵字
Keywords
寬頻、串並聯結合饋入網路、高增益、毫米波、微帶貼片陣列、孔縫耦合饋入
patch array, series and parallel feeding network, wideband, aperture coupled feed, millimeter wave, high gain
統計
Statistics
本論文已被瀏覽 5750 次,被下載 646
The thesis/dissertation has been browsed 5750 times, has been downloaded 646 times.
中文摘要
近年來,隨著無線通訊的快速發展,單位時間內所需的資料傳輸量也呈現大幅度的增加,為了因應高速傳輸的需求,IEEE制定了新一代無線網路通訊協定802.11ad,採用60GHz頻段來進行無線傳輸。而毫米波在空氣中傳播距離短,為了克服此缺點,我們需要高增益天線的設計方式。在本論文中,我們提出設計於57-66GHz頻段內,具有高增益且寬頻的微帶貼片天線陣列。
對於一般的微帶貼片天線來說具有高輻射效益與可以服貼產品表面等優點,尤其是對於具有高傳輸損耗的60GHz頻帶而言,天線的高輻射效率更是設計上的優勢,但微帶天線的缺點在於頻寬僅不到5%,而本文利用孔縫耦合的饋入方式可以將頻寬提升至8%以上,不過傳統的孔縫耦合饋入方式必須在孔縫上方保留氣隙層,該氣隙層在只能透過離子佈值與雷射製程達成,這兩種製程方式對製作成本上具有極大的負擔,為了降低製作成本,我們利用堆疊結構取代了氣隙層,在降低製作成本的同時依舊維持原有的表現特性。
在57-66GHz的頻寬要求約為15%,考慮到天線的頻寬表現以及高增益的要求,我們利用了串聯式陣列饋入方式設計,將原先串聯式陣列容易受到相鄰天線影響的缺點反過來利用,將頻寬表現提升至20%,在天線的增益表現也從原本單天線的6dBi提升至8.2dBi,此外串聯式相較於並聯式陣列饋入網路具有設計簡單的一項優點,但其缺點則可以從天線增益表現看到,當我們增加天線元件至串聯式饋入網路提升增益的效果並不如並聯式饋入網路理想,因此本文結合了串並聯式饋入網路,設計出具有容易製作、寬頻、在增益表現上可達15dBi的4x4孔縫耦合微帶貼片天線陣列。
Abstract
In recent years, the development of wireless communication systems has grown rapidly, and the requirement of high data rate is also soaring significantly. To meet the requirements of high speed data rate transmission, the IEEE defined the standard of 802.11ad for new wireless communication technology. It uses the 60-GHz band to provide wireless communication. However, the range of millimeter wave propagating in air is short. In order to overcome this disadvantage, high gain antennas are required. In this thesis, we propose the patch antenna array which has the property of high gain and wideband operating from 57 to 66 GHz.
Traditional patch antenna has the advantages of high radiation efficiency and low profile. The high radiation efficiency has superiority for high propagating attenuation in the 60-GHz band. But, the bandwidth of patch antenna is only less than 5%. Regarding this, we apply aperture coupled feed and the bandwidth is extended to more than 8%. However, the traditional aperture coupled feed structure has an air layer and the air layer can only be implemented by ion implantation and razer process, both of these two processes cost a lot. To avoid expensive fabrication cost, we adopt stacked structure to replace the original design (with the air layer) and maintain the performances.
The request of bandwidth is about 15% of the band from 57 to 66 GHz. Considering that we need to achieve wideband and high gain performances simultaneously, we utilize the stronger coupling between neighbor elements of series-array, to enhance bandwidth to 20%. In the meantime, the gain performance is also improved to 8.2dBi on 1x2 series-array from 6dBi on a single antenna. Moreover, comparing with parallel-array, series-array feeding network is much simpler and easy to design. The gain enhancement is not as good as parallel-array feeding network design when we increase antenna elements to series-array feeding network design directly. Therefore, we combine both series and parallel feeding network, and design a 4x4 aperture coupled feed path array with the properties of easy fabrication, wideband and gain performance reaches 15dBi.
目次 Table of Contents
論文審定書 i
致 謝 ii
摘要 iii
Abstract iv
目錄 v
圖表目錄 vii
圖表目錄 vii
第一章 序論 1
1-1 研究動機 1
1-2 文獻導覽 2
1-3 各章節提要 3
第二章 孔縫耦合饋入微帶天線 4
2-1 微帶貼片天線簡介[3] 4
2-2孔縫耦合微帶貼片天線 7
2-3 堆疊式耦合饋入微帶貼片天線 10
第三章 串聯式陣列理論與設計 14
3-1 串聯式陣列介紹[4] 14
3-2 1x4串聯式陣列 19
3-3 1x2串聯式陣列 22
3-4串並聯式饋入網路天線陣列 25
第四章 串並聯結合式饋入網路天線陣列 29
4-1 串並聯結合式饋入網路天線陣列 29
4-2 實際製作限制條件調整之天線陣列 34
4-2-1 板材替換之模擬結果 34
4-2-2 延長饋入微帶線並加入接頭基座模擬結果 38
4-3 模擬結果與量測結果比較 43
4-4比較不同正切損耗對增益表現影響程度 49
第五章 結論 56
參考文獻 57
參考文獻 References
[1] Y. Zhang and D. Liu, “Antenna-on-chip and antenna-in-package solutions to highly integrated millimeter-wave devices for wireless communications,” IEEE Trans. Antennas Propag., vol. 57, no. 10, pp. 2830–2841,Oct. 2009.
[2] S. Montanari, Fabrication and characterization of planar Gunn diodes for Monolithic Microwave Integrated Circuits, Forschungszentrum Jülich GmbH, 2005.
[3] K.L. Wong, Planar Antennas for Wireless Communications, John Wiley & Sons, New York, USA, Jan. 2003.
[4] R. C. Hansen, Phase Array Antennas, John Wiley & Sons, 1998.
[5] E. Levine, G. Malamud, S. Shtrikman and D. Treves, "A study of microstrip array antennas with the feed network," IEEE Trans. Antennas Propag., vol. 37, no. 4, pp. 426-434, Apr 1989.
[6] T. Yuan, N. Yuan and L. W. Li, "A Novel Series-Fed Taper Antenna Array Design," IEEE Antennas Wireless Propag. Lett., vol. 7, no. , pp. 362-365, 2008.
[7] Z. Chen and S. Otto, "A taper optimization for pattern synthesis of microstrip series-fed patch array antennas," Wireless Technology Conference, 2009. EuWIT 2009. European, Rome, 2009, pp. 160-163.
[8] K. Phalak & A. Sebak, "Aperture coupled microstrip patch antenna array for high gain at millimeter waves," in Communication, Networks and Satellite (COMNETSAT), 2014 IEEE International Conference on , vol., no., pp.13-16, 4-5 Nov. 2014
[9] Y. B. Jung, I. Yeom and C. W. Jung, "Centre-fed series array antenna for K-/Ka-band electromagnetic sensors," IET Microw. Antennas Propag., vol. 6, no. 5, pp. 588-593, April 12 2012.
[10] X. Lin, M. Luo, Y. Yang and K. Huang, "High-gain aperture-coupled microstrip array antenna," Microwave and Millimeter Wave Technology (ICMMT), 2012 International Conference on, Shenzhen, pp. 1-4,2012
[11] K. Wincza and S. Gruszczynski, "Microstrip Antenna Arrays Fed by a Series-Parallel Slot-Coupled Feeding Network," IEEE Antennas Wireless Propag. Lett., vol. 10, no. , pp. 991-994, 2011..
[12] E. Abdo-Sánchez, J. Esteban, T. M. Martín-Guerrero, J. E. Page and C. Camacho-Peñalosa, "Microstrip series-fed array based on the strip-slot element," Antennas and Propagation (EuCAP), 2013 7th European Conference on, Gothenburg, pp. 1447-1450,2013.
[13] D. G. Babas and J. N. Sahalos, "Synthesis method of series-fed microstrip antenna arrays,"Electronics Lett., vol. 43, no. 2, pp. 78-80, Jan. 18 2007.
[14] D. M. Pozar, "Microstrip antenna aperture-coupled to a microstripline," Electronics Lett., vol. 21, no. 2, pp. 49-50, Jan. 17 1985.
[15] D. Pozar and R. Jackson, "An aperture coupled microstrip antenna with a proximity feed on a perpendicular substrate," IEEE Trans. Antennas Propag., vol. 35, no. 6, pp. 728-731, Jun 1987.
[16] A. C. Buck and D. M. Pozar, "Aperture-coupled microstrip antenna with a perpendicular feed," Electronics Lett., vol. 22, no. 3, pp. 125-126, Jan. 30 1986.
[17] H. Vikalladi, O. Lafond & M. Himdi, "High-Efficient and High-Gain Superstrate Antenna for 60-GHz Indoor Communication," IEEE Antennas Wireless Propag. Lett. , vol.8,no., pp.1422-1425, 2009.
[18] B. R. Franciscatto, A. C. Souza, C. Defay, T. T. Trang and T. P. Vuong, "High gain microstrip patch antenna array using multiple superstrate layers for DSRC applications," Antennas and Propagation in Wireless Communications (APWC), 2012 IEEE-APS Topical Conference on, Cape Town,, pp. 736-739,2012.
[19] M.M. Bilgic & K. Yegin, "Wideband Offset Slot-Coupled Patch Antenna Array for X/Ku- Band Multimode Radars," IEEE Antennas Wireless Propag. Lett., vol.13, no., pp.157-160, 2014.
[20] S.B. Yeap, Z.N. Chen & X. Qing, "Gain-Enhanced 60-GHz LTCC Antenna Array With Open Air Cavities," IEEE Trans. Antennas Propag., vol.59, no.9, pp.3470-3473, Sept. 2011.
[21] D. G. Kam, D. Liu, A. Natarajan, S. Reynolds, H. C. Chen and B. A. Floyd, "LTCC Packages With Embedded Phased-Array Antennas for 60 GHz Communications," IEEE Microw. Wireless Compon. Lett., vol. 21, no. 3, pp. 142-144, March 2011.
[22] D. G. Kam, D. Liu, A. Natarajan, S. Reynolds and B. A. Floyd, "Low-cost antenna-in-package solutions for 60-GHz phased-array systems," 19th Topical Meeting on Electrical Performance of Electronic Packaging and Systems, Austin, TX, pp. 93-96,2010.
[23] R. B. Waterhouse, D. Novak, A. Nirmalathas and C. Lim, "Broadband printed millimeter-wave antennas," IEEE Trans. Antennas Propag., vol. 51, no. 9, pp. 2492-2495, Sep 2003.
[24] S. H. Choi and J. Y. Lee, "Microstrip patch array antenna fed by waveguide endwall coupler," Microwave Conference EuMC 2009. European, Rome, pp. 1468-1471,2009.
[25] J. P. Kim,” Analysis and equivalent circuit of aperture-coupled cavity-fed microstrip patch antenna,” Microw. Opt. Technol. Lett., 48: 843–846,2006.
[26] L. Wang, Y. X. Guo and W. X. Sheng, "Wideband High-Gain 60-GHz LTCC L-Probe Patch Antenna Array With a Soft Surface," IEEE Trans. Antennas Propag., vol. 61, no. 4, pp. 1802-1809, April 2013.
[27] F. Croq and D. M. Pozar, "Millimeter-wave design of wide-band aperture-coupled stacked microstrip antennas," IEEE Trans. Antennas Propag., vol. 39, no. 12, pp. 1770-1776, Dec. 1991.
[28] S. D. Targonski, R. B. Waterhouse and D. M. Pozar, "Design of wide-band aperture-stacked patch microstrip antennas," IEEE Trans. Antennas Propag., vol. 46, no. 9, pp. 1245-1251, Sep 1998.
[29] S. D. Targonski and R. B. Waterhouse, "An aperture coupled stacked patch antenna with 50% bandwidth,"in IEEE Antennas Propag. Symp. Dig., Baltimore, MD,, pp. 18-21 vol.119,1996.
[30] Warren L. Stutzman & Gary A. Thiele, Antenna Theory and Design, John Wiley & Sons, 3rd Edition.
[31] E. E. Okon and C. W. Turner, "Design of broadband microstrip series array for mm-wave applications," Electron. Lett., vol. 38, no. 18, pp. 1036-1037, 29 Aug 2002.
[32] T. Yuan, N. Yuan and L. W. Li, "A Novel Series-Fed Taper Antenna Array Design," IEEE Antennas Wireless Propag. Lett., vol. 7, no. , pp. 362-365, 2008.
[33] Z. Chen and S. Otto, “A taper optimization for pattern synthesis of microstrip series-fed patch array antennas,” in Proc. IEEE EuWIT, 2009, pp. 160–163.
[34] Y.-B. Jung, I. Yeom, and C. W. Jung, “Centre-fed series array antenna for k-/ka-band electromagnetic sensors,” IET Microw., Antennas, Propag., vol. 6, no. 5, pp. 588–593, Apr. 2012.
[35] D. G. Babas and J. N. Sahalos, “Synthesis method of series-fed microstrip antenna arrays,” Electron. Lett., vol. 43, no. 2, pp. 78–80, Jan. 2007.
[36] X. Lin, M. Luo, Y. Yang and K. Huang, "High-gain aperture-coupled microstrip array antenna," Microw. and Millimeter Wave Technology (ICMMT), 2012 International Conference on, Shenzhen, 2012, pp. 1-4.
[37] K. Wincza, S. Gruszczynski, and J. Borgosz, “Microstip antenna array with series-fed ‘through-element’ coupled patches,” Electron. Lett., vol. 43, no. 9, pp. 487–489, Apr. 2007.
[38] E. Abdo-Sánchez, J. Esteban, T. M. Martín-Guerrero, J. E. Page and C. Camacho-Peñalosa, "Microstrip series-fed array based on the strip-slot element," Antennas Propag. (EuCAP), 2013 7th European Conference on, Gothenburg, 2013, pp. 1447-1450.
[39] K.. Phalak, and A. Sebak,“Aperture coupled microstrip patch antenna array for high gain at millimeter waves,” IEEE International Conference on Communication, Networks and Satellite (COMNETSAT), 4-5 Nov. 2014, Jakarta, pp. 13-16, 2014.
[40] A. Perron, T.A. Denidni, and A.R. Sebak , "Improving the gain and reducing the side lobe levels of a microstrip/dielectric resonator millimeter-wave antenna," (APSURSI), 2010 IEEE , vol., no., pp.1,4, 11-17 July 2010.
[41] S. B. Yeap and Z. N. Chen, "Microstrip Patch Antennas With Enhanced Gain by Partial Substrate Removal," IEEE Trans. Antennas Propag., vol. 58, no. 9, pp. 2811-2816, Sept. 2010.
[42] K. Gong, Z. N. Chen, X. Qing, P. Chen and W. Hong, "Substrate Integrated Waveguide Cavity-Backed Wide Slot Antenna for 60-GHz Bands," IEEE Trans. Antennas Propag., vol. 60, no. 12, pp. 6023-6026, Dec. 2012.
[43] http://www.tuc.com.tw/products-category.php?id=1&type=5#
[44] http://www.tuc.com.tw/products-detail.php?id=23&type=1
[45] M. M. Bilgic and K. Yegin, "Wideband Offset Slot-Coupled Patch Antenna Array for X/Ku-Band Multimode Radars," IEEE Antennas Wireless Propag. Lett., vol. 13, pp. 157-160, 2014.
[46] http://www.rogerscorp.com/documents/2517/acs/RO4000-LaminatesData-Sheet.pdf
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code