Responsive image
博碩士論文 etd-0720118-172855 詳細資訊
Title page for etd-0720118-172855
論文名稱
Title
厚度20 mm純銅板之摩擦攪拌銲接特性的研究
Studies on Friction Stir Welding Characteristics of Pure Copper Plate with 20 mm Thickness
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
94
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-24
繳交日期
Date of Submission
2018-08-20
關鍵字
Keywords
純銅、拉伸強度、金相觀察、超耐熱合金、摩擦攪拌銲接
metallographic, tensile strength, pure copper, friction stir weld, super alloy
統計
Statistics
本論文已被瀏覽 5658 次,被下載 0
The thesis/dissertation has been browsed 5658 times, has been downloaded 0 times.
中文摘要
本研究使用傳統立式銑床改裝之摩擦攪拌銲接機及可量測軸向負荷之工作平台,使用高速鋼、Nimonic 75超耐熱合金及Inconel 600超耐熱合金三種工具材料,在工具傾角1.5°、工具轉速1000 rpm以及不同進給速度45 mm/min、60 mm/min、86 mm/min之條件下,對厚度20 mm 純銅板進行摩擦攪拌銲接。在固定實驗條件情況下,討論不同工具材料與探針幾何對探針變形的影響。最後探討進給速度對銲接軸向負荷、溫度變化及接合強度之影響,並透過金相觀察討論進給速度對銲道機械性質的影響。
研究結果顯示,摩擦攪拌單點銲接中,使用三種工具材料進行實驗,持壓時間均為10秒即能達到飽和溫度870°C,並在實驗後觀察工具,發現高速鋼工具在銲接後有明顯變形,不適合作為工具材料,故將超耐熱合金作為主要工具材料,並進行多次實驗,以確保工具的重複使用性。此外,在固定實驗條件下,探針幾何對銲道及工具變形的影響,錐度40°之探針幾何由於探針尖端材料較少,銲接時容易造成工具變形,並且對試片底部的材料帶動不完全,導致材料回填不足,容易形成空孔缺陷,故將錐度30°之探針幾何作為主要工具參數。
最後探討進給速度對銲道的影響,在進給速度45~86 mm/min之條件下,銲道的拉伸強度無明顯的變化。試片的上半部有較強的拉伸強度,能達到母材拉伸強度的90%以上,伸長率則能達到母材伸長率的75%以上;試片的下半部則因為試片底部的攪拌會較不均勻,拉伸強度較低,但也能達到母材拉伸強度的80%以上,伸長率則為母材伸長率的40%以上。此外,進給速度越快則會使工件硬度些微上升,並且透過金相觀察可得知,進給速度越快,攪拌區內的晶粒會更細化。
Abstract
In this study, 20 mm thick pure copper plates were friction stir welded (FSW) by three different tool materials at tilt angle of 1.5°, tool rotating speed of 1000 rpm, and different feed speeds to investigate the effect of tool material and pin geometry on the pin deformation. In the FSW experiments, the downward force and the temperature were measured to record their time histories. Finally, effects of feed speed on the downward force, the temperature and the joint strength were investigated. The mechanical properties of the weld were discussed by observing the metallography of the fractured surface in the tensile test after welding.
Experimental results show that the temperature achieved 870°C after dwell time of 10 seconds in the friction stir spot welding using three tool materials. The high-speed steel tool was obviously deformed after welding, and it was not suitable as a tool material. Inconel 600 and Nimonic 75 were selected as the materials with the tool reusability. The pin with the angle of 40° was easy to deform during FSW process due to less material at its tip. Moreover, the material at the bottom of the workpiece was not fully driven, resulting in insufficient backfilling of the material with void defects. Consequently, the pin with the angle of 30° was selected.
Results showed that the tensile strength of the weld had no obvious variation under the feed speeds of 45~86 mm/min after FSW process. The top of workpieces could achieve more than 90% of tensile strength of pure copper, and the elongation could achieve more than 75% of base metal. Since stirring was less uneven at the bottom of workpieces, it had more than 80% of tensile strength, and the elongation could achieve more than 40% of base metal. In addition, the faster the feed speed, the slighter the hardness of the workpiece, due to the finer the grain in the stirring zone by observing the metallography of the weld.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iv
Abstract v
目錄 vi
圖次 viii
表次 xiii
第一章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 3
1.2.1 工具轉速對銲道的影響 3
1.2.2 進給速度對銲道的影響 5
1.2.3 下壓力對銲道的影響 8
1.2.4 工具傾角對缺陷的影響 9
1.2.5 工具幾何對銲接的影響 10
1.2.6 純銅摩擦攪拌銲接之特性 23
1.3 研究目的 31
第二章 實驗設備與實驗方法 33
2.1 實驗設備 33
2.1.1 工作台 34
2.1.2 溫度量測背板 36
2.1.3 摩擦攪拌銲接工具與試片 37
2.2 實驗方法 40
2.3 極限拉伸試驗 42
2.4 金相觀察與微硬度試驗 44
2.5 實驗流程 45
第三章 實驗結果 46
3.1 單點銲接 46
3.1.1 工具材料探討 46
3.1.2 工具尺寸探討 49
3.1.3 工具重複使用性探討 52
3.2 進給銲接 55
3.2.1 工具材料對進給銲接之探討 55
3.2.2 工具錐度對銲道的影響 59
3.3 進給速率對軸向負荷與溫度之影響 63
3.4 進給速率對銲道強度之影響 69
3.5 銲道剖面之金相觀察 72
3.6 微硬度分布 74
第四章 結論與未來展望 75
4.1 結論 75
4.2 未來展望 77
參考文獻 78
參考文獻 References
[1] W.M. Thomas, E. D. Nicholas, J.C. Needham, M.G. Murch, P. Temple-Smith and C.J. Dawes. (1991). Friction stir butt welding. International Patent Application. PCT/GB92/02203 and GB Patent Application 9125978.8.
[2] W.M. Thomas, E.D. Nicholas, R.E. Dolby, C.J. Jones and R.H. Lilley. Friction plug extrusion. International Patent. PCT/GB92/01540.21.8.92.
[3] M. Matsushita, Y. Kitani, R. Ikeda, K. Oi and H. Fujii. (2011). Development of friction stir welding of high strength steel sheet. Science and Technology of Welding and Joining, 16(2), 181-187.
[4] K. Nakata. (2005). Friction stir welding of copper and copper alloys. Welding International, 19(12), 929-933.
[5] M. Dehghani, A. Amadeh and S.A.A. Akbari Mousavi. (2013). Investigations on the effects of friction stir welding parameters on intermetallic and defect formation in joining aluminum alloy to mild steel. Materials and Design, 49, 433-411.
[6] Y. Wei, J. Li, J. Xiong, F. Huang, F. Zhang and S.H. Raza. (2012). Joining aluminum to titanium alloy by friction stir lap welding with cutting pin. Materials Characterization, 71, 1-5.
[7] A. Abdollah-Zadeh, T. Saeid and B. Sazgari. (2008). Microstructural and mechanical properties of friction stir welded aluminum/copper lap joints. Journal of Alloys and Compounds, 460(1-2), 535-538.
[8] R.S. Mishra and Z.Y. Ma. (2005). Friction stir welding and processing. Materials Science and Engineering R, 50(1-2), 1-78.
[9] H.J. Liu, J.J. Shen, Y.X. Huang, L.Y. Kuang, C. Liu and C. Li. (2009). Effect of tool rotation rate on microstructure and mechanical properties of friction stir welded copper. Science and Technology of Welding and Joining, 14(6), 577-583.
[10] G.M. Xie, Z.Y. Ma, and L. Geng. (2007). Development of a fine-grained microstructure and the properties of a nugget zone in friction stir welded pure copper. Scripta Materialia, 57(2), 73-76.
[11] J.J. Shen, H.J. Liu and F. Cui. (2010). Effect of welding speed on microstructure and mechanical properties of friction stir welded copper. Materials and Design, 31(8) 3937–3942.
[12] A. Azizi, R. Vatankhah Barenji, A. Vatankhah Barenji and M. Hashemipour. (2016). Microstructure and mechanical properties of friction stir welded thick pure copper plates. The International Journal of Advanced Manufacturing Technology, 86(5-8), 1985-1995.
[13] Y.G. Kim, H. Fujii, T. Tsumura, T. Komazaki and K. Nakata. (2006). Three defect types in friction stir welding of aluminum die casting alloy. Materials Science and Engineering A, 415(1-2), 250-254.
[14] H.B. Chen, K. Yan, T. Lin, S.B. Chen, C.Y. Jiang and Y. Zhao. (2006). The investigation of typical welding defects for 5456 aluminum alloy friction stir welds. Materials Science and Engineering A, 433(1-2), 64-69.
[15] D.G. Hattingh, C. Blignault, T.I.van Niekerk and M.N. James. (2008). Characterization of the influences of FSW tool geometry on welding forces and weld tensile strength using an instrumented tool. Journal of Materials Processing Technology, 203(1-3), 46-57.
[16] G. Padmanaban and V. Balasubramanian. (2009). Selection of FSW tool pin profile, shoulder diameter and material for joining AZ31B magnesium alloy – An experimental approach. Materials & Design, 30(7), 2647-2656
[17] H. Khodaverdizadeh, A. Heidarzadeh and T. Saeid. (2013). Effect of tool pin profile on microstructure and mechanical properties of friction stir welded pure copper joints. Materials and Design, 45, 265-270.
[18] Vinayak Malik, N.K. Sanjeev, H. Suresh Hebbar and Satish V. Kailas. (2014). Investigations on the Effect of Various Tool Pin Profiles in Friction Stir Welding Using Finite Element Simulations. Procedia Engineering, 97, 1060-1068.
[19] M.S. Srinivasa Rao, B.V.R. Ravi Kumar and M. Manzoor Hussain. (2017). Experimental study on the effect of welding parameters and tool pin profiles on the IS:65032 aluminum alloy FSW joints. Materials Today: Proceedings, 4(2), 1394-1404.
[20] W.B. Lee and S.B. Jung. (2004). The joint properties of copper by friction stir welding. Materials Letters, 58(6), 1041-1046.
[21] Y.F. Sun and H. Fujii. (2010). Investigation of the welding parameter dependent microstructure and mechanical properties of friction stir welded pure copper. Materials Science and Engineering A, 527(26), 6879-6886.
[22] A. Heidarzadeh and T. Saeid. (2013). Prediction of mechanical properties in friction stir welds of pure copper, Materials and Design, 52, 1077-1087.
[23] J. Teimurnezhad, H. Pashazadeh and A. Masumi. (2016). Effect of shoulder plunge depth on the weld morphology, macrograph and microstructure of copper FSW joints. Journal of Manufacturing Processes, 22, 254-259.
[24] 吳致穎(民國105年)。厚度10 mm 的純銅板之摩擦攪拌銲接研究。國立中山大學機械與機電工程研究所碩士論文。
[25] 蔡和庭(民國106年)。厚度15 mm 的純銅板摩擦攪拌銲接之機械性質及微觀結構研究。國立中山大學機械與機電工程研究所碩士論文。
[26] L. Cederqvist and T. Öberg. (2008). Reliability study of friction stir welded copper canisters containing Sweden's nuclear waste. Reliability Engineering & System Safety, 93(10), 1491-1499.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.21.76.0
論文開放下載的時間是 校外不公開

Your IP address is 3.21.76.0
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code