Responsive image
博碩士論文 etd-0721100-015724 詳細資訊
Title page for etd-0721100-015724
論文名稱
Title
以觸媒濕式氧化法處理印刷電路板高濃度COD廢液之研究
Catalytic Wet Air Oxidation of the High-concentration (COD) Wastewater Generated from the Printed Circuit Board Industry
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
123
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2000-06-27
繳交日期
Date of Submission
2000-07-21
關鍵字
Keywords
印刷電路板、Pt/SiO2·Al2O3觸媒、Pt·X/γ-Al2O3 觸媒、觸媒濕式氧化法
Pt·X/γ-Al2O3 catalyst, catalytic wet air oxidation (CAWO), Printed Circuit Board (PCB), Pt/SiO2·Al2O3 catalyst
統計
Statistics
本論文已被瀏覽 5669 次,被下載 4507
The thesis/dissertation has been browsed 5669 times, has been downloaded 4507 times.
中文摘要
本研究以前處理程序(酸化及化學混凝法)加上濕式氧化法(Wet Air Oxidation,WAO)配合添加不同觸媒處理印刷電路板(簡稱PCB)製造業之顯影、除膠高濃度廢液(COD=7740∼12700mg/L),廢液經前處理後,其COD值降至3050∼4260mg/L,以此處理液作為WAO程序之廢水原液,濕式氧化實驗範圍:溫度(200∼260℃),氧分壓(0∼3MPa),觸媒(Pt/SiO2∙Al2O3與Pt∙X/γ-Al2O3)。結果顯示,濕式氧化程序對廢水原液(顯影、除膠廢液經酸化及化學混凝前處理後之處理液簡稱)的COD分解反應分成兩階段,第一階段較為快速而第二階段則趨於緩慢,但兩者之反應速率皆呈現一階反應,而溫度與觸媒是去除COD最重要之因子,壓力次之。
WAO之最佳操作條件為溫度260℃,氧分壓2.0MPa,反應時間60分鐘時,COD之去除率達75%,但添加Pt/SiO2∙Al2O3觸媒與Pt∙X/γ-Al2O3觸媒後,COD去除率可分別提昇至78%及91%,此外,探討TOC與COD之相關性,發現添加Pt∙X/γ-Al2O3對廢水原液中所含有機物質之礦化程度最完全(COD/TOC=3.7),其次為添加Pt/SiO2∙Al2O3(COD/TOC=3.9),傳統WAO程序最差(COD/TOC=4.42∼5.17)。綜合以上COD去除率與TOC去除率變化之結果,可知高溫(260℃以上)及添加觸媒對COD物質的礦化作用最為有效。
另一方面,濕式氧化法也有助於提昇生物可分解性,反應溫度於220℃以上,反應60分鐘,BOD5/COD比值範圍為0.68∼0.93,但添加觸媒之濕式氧化程序的BOD5/COD比值較同操作條件下之WAO程序低,原因可能係由於處理液中較易被生物分解之有機物質被觸媒有效的催化降解。此外,廢液中之有機物質反應後除完全礦化成CO2外,亦會產生低分子之有機酸等中間產物。
以COD去除率來估算活化能值,分別如下:WAO之第一階段(38.42 kJ /mole.),第二階段(38.3 kJ /mole.);添加Pt/SiO2∙Al2O3之第一階段(18.25 kJ /mole.),第二階段(25.76kJ /mole.);添加Pt∙X/γ-Al2O3之第一階段(16.05 kJ /mole.),第二階段(49.61 kJ /mole.)。比較之下,上述添加Pt/SiO2∙Al2O3及Pt∙X/γ-Al2O3觸媒,皆明顯地降低濕式氧化反應所需之活化能。
顯影、除膠高濃度( COD )廢液經由酸化/化學混凝沉澱前處理單元與添加Pt∙X/γ-Al2O3之觸媒濕式氧化法(Catalytic Air Wet Oxida-tion,CWAO)的組合程序處理後,其COD總去除率可達96%以上,且BOD5/COD比值提昇至0.6以上,若再配合既有廢水之生物處理程序,則放流水即可符合我國89年放流水標準(COD≦120 mg/L)。
Abstract
In this study, the wastewater generated from etching process of the Printed Circuit Board (PCB) was treated by a process including both acidification and coagulation/sedimentation and then followed by the catalytic wet air oxidation (CWAO) over different catalysts (either Pt/SiO2·Al2O3 or Pt·X/γ-Al2O3) process in series. Although the initial chemical oxygen demand (COD) concentration of the wastewater is as high as 7740-12700 mg/L, the effluent of the pretreatment process was measured to have COD value in ranges of 3050-4260 mg/L. Several re-action parameters, such as reaction temperatures (200-260℃), oxygen partial pressures (0-3 MPa), and two kinds of catalysts were performed experimentally to investigate the COD reduction of the wastewater during the CWAO process. Both reaction temperature and variety of catalyst are found most effectively on the COD reduction. However, the effect of oxygen partial pressure on the COD reduction is just in little. Results showed that the COD reduction during the CWAO over the Pt·X/γ-Al2O3 catalyst process is the most significant, which with a tow-step re-action and both the two reactions do obey first-order reaction kinetics. A change from a higher reaction activity of the CWAO reaction to a slower one implies a decrease of the reaction rate.
On basis of our experiments data, the effective operating conditions of CWAO for the COD reduction was observed to be at temperature of 260℃ under oxygen partial pressure of 2.0 MPa and at a retention time period of 60 min. The COD conversion was calculated as high as 75%; however, it could be enhanced up to 78% and 91%, respectively, when the CWAO was conducted in presence of the Pt/SiO2·Al2O3 and Pt·X/γ-Al2O3 catalysts, respectively. It can be seen that the organic compound of the wastewater was mineralized most completely (with a COD/TOC ratio of 3.7±0.2) after the CWAO over the Pt·X/γ-Al2O3 catalyst process. Furthermore, a higher COD/TOC ratio of 3.9±0.3 was achieved when the Pt/SiO2·Al2O3 catalyst was in presence of the CWAO process, and the primitive WAO process had the highest COD/TOC ratio of 4.8±0.4. The experimental data showed that both a higher reaction temperature (≧260℃) and an application of catalyst are more important factors for the min-eralization of the organic compound of the wastewater during the CWAO process.
In our investigation, BOD5/COD ratio has been used to assess if the WAO and/or the CWAO process treatment yield products more amenable to biodegradation. The BOD5/COD ratio was 0.68-0.93 when the reaction temperature was above 220℃ and the retention time was as long as 60 min. Unfortunately, the BOD5/COD ratio of the effluent from the CWAO process came out a lower value (0.45-0.65) though it was under the same reaction conditions. It is probable that the biodegradable portion of the organic compounds of the wastewater were decomposed easier during the CWAO process than during the WAO process. In addition, it was found that the products of the wastewater was decomposed partially into CO2 and into some low molecular weigh acids, such as formic acid, acetic acid, propionic acid, etc.
The activation energy with respect to COD was calculated to be 38.42 kJ/mole and 83 kJ/mole, respectively, for the first-step reaction and for the second-step reaction, respectively, of the WAO process. It was al-so calculated that the first-step reaction of the CWAO over the Pt/SiO2·Al2O3 catalyst process has activation energy of 18.25 kJ/mole and 25.76 kJ/mole is for the second-step reaction. However, 16.05 kJ/mole and 49.61 kJ/mole are calculated for the first-step and the sec-ond-step reactions, respectively, of the CWAO over the Pt·X/γ-Al2O3 catalyst process. It can be seen that the application of both the Pt/SiO2·Al2O3 and the Pt·X/γ-Al2O3 catalysts has a significant effect on reducing the activation energy of the WAO.
It was observed that the total COD conversion of the wastewater is as high as 96% and the BOD5/COD ratio of the effluent has been en-hanced up to more than 0.6. The combination of both the CWAO over the Pt·X/γ-Al2O3 catalyst and the biological treatment is a promising tech-nique for the PCB’s wastewater treatment to fit the wastewater control regulation in Taiwan, which requests the COD value of the wastewater discharged should be less than 120 mg/L.
目次 Table of Contents
目  錄
頁數
謝誌…………………………………………….……………………….Ⅰ
摘要……………………………………………………………………..Ⅱ
Abstract……………………………………………………………….…Ⅳ
目錄……………………………………………………………………..Ⅶ
表目錄…………………………………………………………………..Ⅹ
圖目錄……………………………….………….……………………….ⅩⅠ

第一章前言………………………………………………………………1
1-1研究緣起………………………………………………………….1
1-2顯影和除膠廢液來源及成分…………………………………….3
1-3研究目的………………………………………………………….4
1-4研究內容………………………………………………………….6

第二章文獻回顧…………………………………………………………7
2-1觸媒濕式氧化法…………………………………………………7
2-1-1濕式氧化原理………………………………………………..7
2-1-2濕式氧化法的發展…………………………………………..7
2-1-3濕式氧化法之動力模式……………………………………10
2-1-4濕式氧化法的產物…………………………………………11
2-1-5濕式氧化法的操作因子……………………………………13
2-1-5-1反應溫度………………………………………………..13
2-1-5-2反應壓力………………………………………………..13
2-1-5-3反應時間………………………………………………..14
2-1-5-4觸媒添加………………………………………………..14
2-2顯影、除膠廢液之特性及處理………………………………..15
2-2-1顯影、除膠廢液特性………………………………………19
2-2-2顯影、除膠廢液之處理……………………………………20
2-2-2-1酸化及化學混凝沉澱處理法(前處理)………………...20
2-2-2-2生物處理法(二級處理)………………………………...22
2-2-2-3活性碳吸附法(後處理)………………………………...22
2-2-2-4電解-Fenton氧化法……………………………………23
2-2-2-5濕式氧化法…………………………………………….24

第三章實驗設備與研究方法…………………………………………25
3-1實驗裝置………………………………………………………25
3-1-1實驗設備及功能說明……………………………………..25
3-1-2實驗操作步驟……………………………………………..28
3-2實驗材料………………………………………………………30
3-2-1實驗水樣…………………………………………………..30
3-2-2實驗藥品…………………………………………………..30
3-2-3實驗用觸媒………………………………………………..32
3-2-4實驗儀器…………………………………………………..32
3-3實驗方法………………………………………………………33
3-3-1實驗設計…………………………………………………..33
3-3-2實驗分析項目及方法……………………………………..38

第四章 結果與討論…………………………………………………..41
4-1顯影、除膠廢液成分分析…………………………………….41
4-2觸媒之組成成分及表面性質………………………………….41
4-3前導實驗……………………………………………………….47
4-3-1以濕式氧化法直接處理顯影、除膠廢液之效能評估…...47
4-3-2酸化及化學混凝法處理顯影、除膠廢液之效能評估…...48
4-4半批次式反應操作條件之影響……………………………….54
4-4-1反應溫度之影響……………………………………………54
4-4-2氧分壓之影響………………………………………………58
4-4-3觸媒影響……………………………………………………60
4-5 BOD5/COD的變化……………………………………………..74
4-6連續式反應操作效能之探討…………………………………..79
4-6-1中間產物……………………………………………………79
4-6-2觸媒活性衰退試驗…………………………………………88
4-7反應動力式推導………………………………………………..89
4-8成本估算………………………………………………………...93

第五章 結論與建議……………………………………………………95
5-1結論……………………………………………………………..95
5-2建議……………………………………………………………..96

參考文獻………………………………………………………………..98
附錄Ⅰ 原始數據表…………………………………………………103
附錄Ⅱ 水蒸氣壓表……………………………………………...….109
表目錄
頁數
表1-1 世界主要國家資訊硬體產品產值排名………………………..2
表2-1 反應條件下水蒸氣壓計算表………………………………..13
表2-2 各類廢水及選用之觸媒……………………………………..16
表2-3 某案例廠水質水量資料……………………………………..17
表2-4 各類型PC板工廠顯影、去墨/膜廢液污染特性分析……..18
表2-5 顯影、除膠廢液各種前處理方法的試驗結果及成效評估..21
表3-1 觸媒之表面性質……………………………………………..32
表3-2 顯影、除膠廢液濕式氧化實驗操作條件直交表…………..37
表4-1 原廢水水質…………………………………………………..42
表4-2 原廢液於WAO反應過程中外觀之顏色變化……………...42
表4-3 原廢液酸化及化學混凝沉澱之前處理效果………………..51
表4-4 廢液於WAO、CWAO反應過程中外觀之顏色變化……...52
表4-5 圖4-17、圖4-18及圖4-19迴歸分析之R2值與斜率…….74
表4-6 添加Pt-X/γ-Al2O3觸媒之CWAO處理液之氯離子濃度..82
表4-7 處理液中之金屬含量………………………………………..88
表4-8 圖4-29中顯影、除膠廢液之CWAO方程式……………...89
表4-9 顯影、除膠廢液WAO程序之活化能及Arrhenius
Frequency………………………………………………...….93
表4-10 酸化及化學混凝沉澱法加CWAO的處理程序之成本估算..94
圖目錄
頁數
圖1-1 PCB業主要流程及廢水來源………………….……………….5
圖1-2 研究流程圖……………………………………………………..6
圖2-1 美國Zimpro公司濕式氧化流程圖……………………………8
圖2-2 APO反應器操作過程典型的溫度/壓力變化圖………………9
圖2-3 Li , Gloyna的氧化流程圖…………………………………….10
圖3-1 半批次式反應器設備圖………………………………………26
圖3-2 連續式反應設備圖……………………………………………27
圖3-3 1,2環氧基……………………………………………………..35
圖3-4 一般商用之液態環氧樹脂分子式……………………………35
圖4-1 以掃描式電子顯微鏡( SEM )拍攝之Pt/SiO2∙Al2O3觸媒表
面結構 ………………………………………….…………...43
圖4-2 以掃描式電子顯微鏡( SEM )拍攝之Pt∙X/γ-Al2O3觸媒
表面結構……………………………………………………...44
圖4-3 Pt/SiO2∙Al2O3觸媒之X-Ray繞射圖………………………….45
圖4-4 Pt∙X/γ-Al2O3觸媒之X-Ray繞射圖………..…..…………….46
圖4-5 顯影、除膠廢液直接經WAO程序,反應溫度對COD
去除率之影響(PO2=2.0 MPa,pH0= 6.4,Initial conc.
of COD = 17900 mg/L)………………………………………49
圖4-6 顯影、除膠廢液酸化滴定曲線………………………………50
圖4-7 濕式氧化反應過程中,反應溫度對COD去除率之影響。
(PO2 = 2.0 MPa,pH0= 6.35,Initial conc. of COD =
4260 mg/L )……………...……………………………………55
圖4-8 WAO反應過程中,反應溫度對TOC去除率之影響。
(PO2 = 2.0 MPa,pH0= 6.3,Initial conc. of TOC =
800.07 mg/L )………………………………………………..57
圖4-9 濕式氧化反應過程中,氧分壓對COD去除率之影響。
(Temp.=260℃,pH0= 6.35,Initial conc. of COD =
4260mg/L)…...……………………………………………….59
圖4-10 濕式氧化反應過程中,氧分壓對TOC去除效率之影響。
(Temp.=260℃,pH0= 6.35,Initial conc. of COD =
4260 mg/L)…………………………………………………61
圖4-11 濕式氧化程序中,添加觸媒對COD去除效率之影響。
(Temp.=260℃,PO2=2.0MPa)……………………………62
圖4-12 濕式氧化程序中,添加觸媒對TOC去除效率之影響。
(Temp.=260℃,PO2=2.0MPa)……………………………63
圖4-13 添加Pt/SiO2∙Al2O3觸媒之CWAO,反應溫度對COD
去除率之影響。(PO2 = 2.0 MPa,pH0= 6.35,Initial
conc. of COD = 4260 mg/L )………………….……………...65
圖4-14 添加Pt/SiO2∙Al2O3觸媒之CWAO反應過程中,反應
溫度對TOC去除率之影響。(PO2 = 2.0 MPa,pH0=
6.35,Initial conc. of COD = 4260 mg/L)……………...……67
圖4-15 添加Pt∙X/γ-Al2O3觸媒之CWAO反應過程中,反應
溫度對COD去除率之影響。(PO2 = 2.0 MPa,pH0= 6.3,
Initial conc. of COD = 3880 mg/L )……………………….….68
圖4-16 添加Pt∙X/γ-Al2O3觸媒之CWAO反應過程中,反
應溫度對TOC去除率之影響。(PO2 = 2.0 MPa,pH0=
6.3,Initial conc. of COD = 3880 mg/L)……………...……70
圖4-17 WAO程序中,處理液所含COD值與TOC值之相
互變動關係。(pH0= 6.35,Initial conc. of COD
= 4260 mg/L)…………………………………….…………....71
圖4-18 添加Pt/SiO2∙Al2O3之CWAO程序中,處理液所含
COD值與TOC值之相互變動關係。(pH0= 6.35,
Initial conc. of COD = 4260 mg/L)……………………..……72
圖4-19 添加Pt∙X/γ-Al2O3之CWAO程序中,處理液所含
COD值與TOC值之相互變動關係。(pH0= 6.3,
Initial conc. of COD = 3880 mg/L)………...………….…….73
圖4-20 WAO程序中,反應溫度對BOD5/COD比值之影響。
( pH0= 6.35,PO2=2.0MPa,Initial conc. of COD
= 4260 mg/L)………………………………………….………75
圖4-21 WAO程序中,氧分壓對BOD5/COD之影響。
( Temp.=260℃,PO2=2.0MPa,pH0= 6.35,Initial
conc. of COD = 4260 mg/L)………………….………………77
圖4-22 添加Pt/SiO2∙Al2O3觸媒之CWAO程序中,反應
溫度對BOD5/COD之影響。(PO2=2.0MPa,pH0= 6.35,
Initial conc. of COD = 4260 mg/L)……..…………….………78
圖4-23 添加Pt∙X/γ-Al2O3觸媒之CWAO程序中,不同反
應溫度對BOD5/COD之影響。(PO2=2.0MPa,pH0= 6.3,
Initial conc. of COD = 3880 mg/L)…………….….……….…80
圖4-24 (a)WAO、(b)WAO+Pt/SiO2∙Al2O3及(c)WAO+Pt∙X/
γ-Al2O3程序中COD值與BOD5值之變化情形。
( Temp.=260℃,PO2=2.0MPa )………..………………………..81
圖4-25 濕式氧化反應在不同反應溫度下,pH值隨時間之變
化情形。(PO2 = 2.0 MPa,pH0= 6.35,Initial conc.
of COD = 4260 mg/L)……………………….………………..83
圖4-26 添加Pt/SiO2∙Al2O3觸媒之CWAO在不同溫度下,
pH值隨時間變化之情形。(PO2 = 2.0 MPa,pH0= 6.35,
Initial conc. COD =4260 mg/L )……………….…..…………85
圖4-27 添加Pt∙X/γ-Al2O3觸媒之CWAO在不同溫度下,
pH值隨時間變化之情形。(PO2 = 2.0 MPa,pH0= 6.3,
Initial conc. of COD = 3880 mg/L )…………………...……...86
圖4-28 (a)
參考文獻 References
參考文獻
1. 印刷電路板協會網站:http://www.tpca.org.tw/。
2. 經濟部工業局污染防治技術服務團•中國技術服務社,印刷電路板製造業水污染防治技術,1993。
3. 黃耀輝,印刷電路板業高濃度COD廢液高級處理技術比較,中華民國環境工程學會第二十四屆廢水處理技術研討會論文集,pp.785-790,民國88年11月。
4. 水資源政策白皮書,經濟部水資源局,(http://www.wrb.gov.tw/window/index.html),(http://www.wrb.gov.tw/news/index.html)。
5. Alec A. Klinghoffer, Ramon L. Cerro, Martin A. Abraham, "Catalysis wet oxidation of acetic acid using platinum on alumina monolith cata-lyst ", Catalysis Today, Vol.40, pp.59-71 (1998).
6. 美國Zimpro公司網站(http://zimpro.usfiiter.com/wetairoxid-ind.htm).
7. V.S. Mishra, V.V. Mahajani, J.B. Joshi, "Wet Air Oxidation", Ind. Eng. Chem. Res., Vol.34, iss. 1, pp.2-48 (1995).
8. F. Luck, " Wet Air Oxidation: Past, Present and Future ", Catalysis To-day, Vol.53, pp.81-91 (1999).
9. 莊子賢,"濕式氧化及活性污泥法處理含多成分酚類化合物廢水之研究",私立元智大學化學工程研究所碩士論文,中華民國82年6月。
10. 張必杰,以濕式氧化法處理印刷電路板顯像、去墨/剝膜廢液之研究,國立中央大學環境工程研究所碩士論文,民國84年7月。
11. A.K. Chowdhury, Copa W.C. " Wet Air Oxidation of Toxic and Haz-ardous Organics in Industrial Wastewater ", Indian Chemical Engineer, Vol.28, No.3, pp.3-11 (1996).


12. 鄒琮湣,以觸媒濕式氧化法處理鐵氰錯化合物之研究,國立中山大學環境工程研究所碩士論文,民國87年6月。
13. L. Li, P. Chen, E. F. Gloyna, "Generalized Kinetic Model for Wet Oxidation of Organic Compounds ", AIChE J., Vol.37, pp.1687-1697 (1991).
14. L. Li, N. Crain, E. F. Gloyna, "Kinetic Lumping Applied to Waste-water Treatment ", Water Environ. Res. 68, pp.841-854 (1996).
15. C. William, J. Heimbuch, and P. Schaefer, "Demonstration of Wet air Oxidation of Hazardous Waste", Incineration Hazardous Wastes, pp.261-269 (1988).
16. M. J. Dietrich, T. L. Randall, and P. J. Canney, "Wet Air Oxidation of Hazardous Organicity in Wastewater " Environmental Progress, Vol.4, No.3, pp.171-177 (1985).
17. S. Imamura, and D. Akira, "Wet Oxidation of Ammonia Catalyzed by Cerium Based Composite Oxides ", Ind. Eng. Chem. Prod. Res. Dev., Vol.24, No.1, pp.75-80 (1985).
18. Taguchi Junji, Teruyuki Nakato, and Toshio Okuhara, " Selective Oxidative Decomposition of Ammonia in Water to Nitrogen Cata-lyzed by Platinum-supported Titania ", Chemistry Letters, pp.277-278 (1999).
19. 李炳楠,樓基中,賴俊谷,"以濕式氧化法處理2,4-二氯酚水溶液之研究",中華民國環境工程學會第二十四屆廢水處理技術研討會論文集,pp.335-340,民國88年11月。
20. 高志明,高溫水解併同濕式氧化處理鐵氰錯化合物之研究,國立中央大學環境工程研究所碩士論文,1994。
21. Qinglin Zhang, Karl T. Chuang, "Kinetics of wet oxidation of black liquor over a Pt-Pd-Ce/alumina catalyst ", Applied Catalysis B: Envi-romental, Vol.17, pp.321-332 (1998).

22. Khaled Belkacemi, Faical Larachi, Safia Hamoudi, Ginette Turcotte, and Abdelhamid Sayari, "Inhibition and Deactivation Effects in Catalytic Wet oxidation of High-Strength Alcohol-Distillery Liquors ", Ind. Eng. Chem. Res., Vol.38, pp.2268-2274 (1999).
23. Lecheng Lei, Xijun Hu and Po-Lock Yue, " Improved Wet Oxidation for the Treatment of Dyeing Wastewater Concentrate from Membrane Separation Process ", Wat. Res., Vol. 32, No.9, pp.2753-2759 (1998).
24. Atul D. Dhale and Vijaykumar V. Mahajani, "Reactive Dye House Wastewater Treatment. Use of Hybrid Technology: Membrane, Soni-cation Followed by Wet Oxidation ", Ind. Eng. Chem. Res., Vol.38, pp.2058-2064 (1999).
25. Guohua Chen, Lecheng Lei, and Po-Lock Yue, "Wet Oxidation of High-Concentration Reactive Dyes ", Ind. Eng. Chem. Res., Vol.38, pp.1837-1843 (1999).
26. Clayton B. Maugans and Aydin Akgerman, " Catalytic Wet Oxidation of Phenol over a Pt/TiO2 Catalyst, Wat. Res., Vol. 31, No.12, pp.3116-3124 (1997).
27. C. Miro, A. Alejandre, A. Fortuny, C. Bengoa , J. Font and A. Fabre-gat , " Aqueous Phash Catalytic Oxidation of Phenol In A Trickle Bed Reactor : Effect of pH " , Wat. Res., Vol. 33, No.4, pp.1005-1013 (1999).
28. Safia Hamoudi and Faical Larachi, " Wet Oxidation of Catalyzed by Unpromoted and Platinum-Promoted Manganese/Cerium Oxide ", Ind. Eng. Chem. Res., Vol.37, pp.3561-3566 (1998).
29. Safia Hamoudi, Khaled Belkacemi, Faical Larachi, " Catalytic Oxi-dation of Aqueous Phenolic Solutions Catalyst Deactivation and Ki-netics ", Chemical Engneering Science, Vol.54, pp.3569-3576 (1999).


30. Bing-nan Lee, Jie-chung Lou, Tson-ming Tsou, "Study on Wet Air Oxidation of Aqueous Ferrous Cyanide Solution Catalyzed by Three Metal Salts", Asian Waterqual '99 7th IAWQ Asia-pacific Regional Conference, Vol.2, pp.1235-1240 (1999).
31. 黃耀輝、周珊珊、黃國豪、李勝男,"新的電-芬(Electro-Fenton)法於高濃度COD廢水處理之研究",第五屆海峽兩岸環境保護學術研討會論文集,pp.542-547,1998,5月。
32. 朱惟君,"工業污染防治技術服務團成果發表會系列報導(二)-電路板輔導成果發表會",工業污染防治報導,第87期,民國84年6月。
33. J.A. Brydson 著,范啟明譯,"塑膠材料(第四版)",大中國圖書公司,台北,中華民國78年8月。
34. 郭盈顯、陳琪璜、涂茂園、許世雄、方鴻源,"以濕式氧化法處理煉油廢鹼",中國土木水利工程學會第十一屆廢水處理技術研討會論文集,民國75年9月。
35. R. S. Willms, M. B. Anne, D. R. Danny, M. W. David, and P. H. Douglas, "Aqueous-phase Oxidation: The Intrinsic Kinetics of Single Organic Compounds", Ind. Eng. Chem. Res., Vol.26, No.1, pp.148-154 (1987).
36. J. H. Oliver, K. P. Kotu, M. C. Jin, P. D. Allen, and W. M. Stephen, "Factor Affecting Wet Air Oxidation of TNT Red Water: Rate Stud-ies", Journal of Hazardous Materials, Vol.34, pp.51-68 (1993).
37. D. Duprez, F. Delanoe, J. Barbier Jr, P. Isnard, G. Blanchard, "Cata-lytic Oxidation of Organic Compounds in Aqueous Media", Catalysis Today, Vol.29, pp.317-322 (1996).
38. 環保署水質檢測方法,(87)環署檢字第10816 號,NIEA W515.53A http://www.niea.gov.tw/niea/WATER/W51553A.htm。
39. Standard Method, for the Examination of Water and Wastewater, 18th edition. APHA, AWWA, WPCF.
40. 環保署水質檢測方法,(86)環署檢字第79164號(NIEA W510.53A)http://www.niea.gov.tw/niea/WATER/W51053A.htm。
41. 環保署水質檢測方法,(84)環署檢字第02011號(NIEA W417.50)http://www.niea.gov.tw/niea/WATER/W41750T.htm。
42. 環保署水質檢測方法,(89)環署檢字第22799號(NIEA W311.50B)http://www.niea.gov.tw/niea/WATER/W31150B.htm。
43. 環保署水質檢測方法,(83)環署檢字第00555號(NIEA W306.50A)http://www.niea.gov.tw/niea/WATER/W30650A.htm。
44. Lee Henry, and K. Neville, Handbook of Epoxy Resins (1972).
45. L. Herber, and D. K. Faurschou, "Investigation of Wet Oxidation for Bituman and Heavy Oil Recovery Operation", Oil & Gas Conversion Contractors Review Meeting (1985).
46. J. Beyrich, W. Gautchi, W. Regenass, and W. Wiedmann, "Design of Seactors for the Wet Air Oxidation of Industrial Wastewater by Means of Computer Simulation ", Computer and Chemical Eng., Vol.3, pp.161 (1971).
47. 董正鈦、陳秋妏、陳秋雲,"利用光催化二氧化鈦/過氧化氫處理3-氯酚",中華民國環境工程學會第二十屆廢水處理技術研討會論文集,pp.6-93∼6-97,民國84年11月。
48. Hsiao-Kuo Hsuen, and Yao-Hsien Huang, "Wet Air Oxidation of Acetic Acid by Ruthenium Catalysts", Proceedings of The 18th R.O.C Symposium on Catalysis and Reaction Engineering, pp.138∼141 (2000).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code