Responsive image
博碩士論文 etd-0721105-155057 詳細資訊
Title page for etd-0721105-155057
論文名稱
Title
以開關電晶體為主之佈局產生器設計與實作
Design and Implementation of a Layout Generator Based on Pass-Transistor Logic
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
65
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-07-11
繳交日期
Date of Submission
2005-07-21
關鍵字
Keywords
開關電晶體、佈局產生器
critical path, layout generator, pass-transistor logic
統計
Statistics
本論文已被瀏覽 5631 次,被下載 0
The thesis/dissertation has been browsed 5631 times, has been downloaded 0 times.
中文摘要
傳統的數位電路邏輯設計是以CMOS為主,但是以開關電晶體邏輯(Pass-Transistor Logic ; PTL)為主的邏輯電路設計,在面積、速度等方面,均有比CMOS電路有優異的表現。雖然開關電晶體已經可以達到良好的效能,但目前的Place&Route CAD Tool都是針對標準元件庫中的CMOS電路元件設計。所以如果用此種自動擺置拉線工具來產生開關電晶體佈局,會將原本使用開關電晶體邏輯電路的面積和速度優勢大打折扣。
此篇論文主要是實作以開關電晶體電路為主的後段佈局產生器,包括元件位置的最佳化擺置(placement)與繞線(routing),以減少最後實體佈局的面積及繞線對整體速度/功率之影響。此外,本論文也將根據前段合成產生的PTL gate-level netlists ,自動搜尋電路中最長路徑所需的輸入,提供測試輸入給 HSPICE或Nanosim,以便在 post-layout中模擬最長路徑。
所以此篇論文不只能夠產生以PTL電路為主的佈局,還可產生在模擬電路時的測試pattern。
Abstract
Conventional logic circuit designs are based on fully complementary CMOS logic circuits. In the past decade, many Pass-Transistor Logic (PTL) circuits have been proposed that are claimed to have better performance in area, speed and power. Most current PTL logic circuits are composed of a limited number of basic PTL cells (say 2 to 5 types of cells only). However, current placement-and-routing (P&R) CAD tools are mainly designed based on CMOS cell library which usually contains many cells with different logic functions. Thus the P&R tool does not fully exploit the features of the synthesized PTL gate-level netlists. In this thesis, we present a P&R tool dedicated to the generation of the final physical layout for the PTL netlists that are generated from a PTL synthesizer. This backend tool considers the efficient placement and routing of the PTL cells in order to reduce the area cost and to reduce the impact of the interconnection wirings on speed and power performances. Besides, in this thesis, the critical paths of the PTL netlists will be identified and the corresponding input patterns to activate these critical paths will be generated for post-layout speed simulation using HSPICE or Nanosim. In summary, the layout generator in this thesis performs the P&R of PTL netlists and also automatically find the critical paths and their corresponding input patterns.
目次 Table of Contents
第一章 緒論 1
1.1 研究動機 1
1.2 內容大綱 1
第二章 相關研究 2
2.1 CMOS電路和PTL電路的比較 2
2.2 PTL電路合成器 4
2.3 PTL合成器之前段流程 6
第三章 以開關電晶體為主的佈局產生器 12
3.1 設計流程 12
3.2 佈局產生方法 15
3.2.1 PTL元件 15
3.2.2 產生佈局 17
3.2.3 改善連線長度 25
第四章 尋找最長路徑方法及其應用 33
4.1 尋找最長路徑之延遲時間 33
4.2 尋找test-pattern時可能的情況 38
4.3 產生test-pattern的方法 43
4.4 改善產生test-pattern的效率 45
4.5 其他應用 47
第五章 數據比較 48
5.1 產生test-pattern 48
5.2 佈局產生器和P&R tool(Soc encounter)的效能 50
第六章 未來展望 52
參考文獻 53
參考文獻 References
[1] N. H. E. Weste and K. Eshraghian, “Principles of CMOS VLSI Design, A Systems Perspective”, 2nd ed., Addison-Wesley, 1993.
[2] K. Yano, T. Yamanaka, T. Nishida, and M. Satio. “A 3.8-ns cmos 16 _ 16-b multiplier using complementary pass-transistor logic”, IEEE Jour. of Solid-State Circ., 25(2):388–395, April 1990.
[3] A. Parameswar, H. Hara, and T. Sakurai. “A high speed,low power, swing restored pass-transistor logic based multiply and accumulate circuit for multimedia applications”. Proc. Custom Integrated Circuits Conf. ,pages 278–281, May 1994.
[4] T.S. Cheung and K. Asada. “Regenerative passtransistor logic: A circuit technique for high speed digital design”. IEICE Trans. Electron., E79- C(9):1274–1283, 1996.
[5] F.S. Lai and W. Hwang. “Design and implementation of differential cascode voltage switch with pass-gate (dcvspg) logic for high-performance digital systems”. IEEE Jour. of Solid-State Circ., 32(4):563–573, April 1997.
[6] K. Yano, Y. Sasaki, K. Rikino, and K. Seki. “Top-down pass-transistor logic design”. IEEE Jour. of Solid-State Circ., 31(6):792–803, June 1996
[7] P. Buch, A. Narayan, A.R. Newton, and A.L. Sangiovanni-Vincentelli. “Logic synthesis for large pass transistor circuits”. Proc. Int' l Conf. on CAD, pages 663–670, 1997.
[8] V. Bertacco, S. Minato, P. Verplaetse, L. Benini, and G. De Micheli. “Decision diagrams and pass transistor logic synthesis”. In Int' l Workshop on Logic Synth.,
1997.
[9] F. Ferrandi, A.Macii, E. Macii, M. Poncino, R. Scarsi, and F. Somenzi. “Symbolic algorithms for layoutoriented synthesis of pass transistor logic circuits”. In Int' l Conf. on CAD, 1998.
[10] R. Chaudhry, T.-H. Liu, A. Aziz, and J.L. Burns. “Area oriented synthesis for pass-transistor logic”. Proc. Int' l Conf. on Comp. Design, pages 160–167, 1998.
[11] T.-H. Liu, A. Aziz, and J.L. Burns. “Performance driven synthesis for pass-transistor logic”. Proc. Int' l Workshop on Logic Synth., pages 255–259, 1998.
[12] R.E. Bryant. “Graph - based algorithms for Boolean function manipulation”. IEEE Trans. on Comp., 35(8):677–691, 1986.
[13] T. Sakurai, B. Lin, and A. R. Newton. “Multiple-Output Shared Transistor Logic (MOSTL) Family Synthesized Using Binary Decision Diagrams”. Technical Report UCB/ERL M90/21, Electronics Research Lab, Univ. of California, Berkeley, CA 94720, March 1990.
[14] S Yamashita, K Yano, Y. Sasaki, Y. Akita, H. Chikata, K. Rikino, and K. Seki. “Pass-Transistor/CMOS Collaborated Logic: The Best of BothWorlds”. In 1997 Symposium on VLSI Circuits Digest of Technical Papers, pages 31–32, 1997.
[15] Scholl, C., Becker, B. “On the generation of multiplexer circuits for pass transistor logic”, Proc. Design, Automation and Test in Europe Conference and Exhibition 2000. Proceedings , pp. 372 – 378, 2000.
[16] Shen-Fu Hsiao, Ming-Yu Tsai, Ming-Chih Chen, and Chia-Sheng Wen, “An Efficient Pass-Transistor-Logic Synthesizer Using Multiplexers and Inverters Only”, Proc. 2005 IEEE International Symposium on Circuits and Systems (ISCAS2005) , pp. 2433-2436, May 2005.
[17] J. Jain, A. Narayan, C. Coelho, S.P. Khatri, A. Sangiovanni-Vincentelli, R.K.
Brayton, and M. Fujita, “Decomposition techniques for efficient ROBDD
construction.”, Int’l Conf. in FM-CAD,1996.
[18] I.-S. Abu-Khater, et al., ”Circuit Techniques for CMOS Low-Power High-Performance Multipliers”, IEEE Journal of Solid-State Circuits (IEEE JSSC),vol.31, no.10, pp.1535-1546, Oct. 1996.
[19] L.-G. Heller, et al., ” Cascode Voltage Switch Logic:A Differential CMOS Logic Family”, IEEE International Solid-State Circuit Conference, pp.90-91, Feb.1993.
[20] R.-H. Krambeck, C.-M. Lee and H.-S. Law, ”High-Speed Compact Circuits with CMOS”, IEEE JSSC, vol. SC-17, pp.614-619, June.1982.
[21] A. Jaekel, S. Bandyopadhyay and G.-A. Jullien, ”Design of Dynamic Pass-Transistor Logic Circuits Using 123 Decision Diagrams”, IEEE Trans. on Circuits and Systems I: Fundamental Theory and Applications, Volume: 45, Issue: 11, pp. 1172 –1181, Nov. 1998.
[22] S. Mutoh, et al., ”1-V Power Supply High-Speed Digital Circuit Technology with Multithreshold-Voltage CMOS”, IEEE JSSC, vol.30, no.8, pp.847-854, Aug.1995.
[23] J.-H. Pasternak, C.-A.-T. Salama, ”Differential Pass-Transistor Logic”, IEEE Circuits and Devices, pp.23-28, July. 1993.
[24] J.-M. Wang, et al., ”New Efficient Designs for XOR and XNOR Functions on the Transistor Level”, IEEE JSSC, vol.29, no.7, pp.780-786, July. 1987.
[25] M. Suzuki, et al., ”A 1.5 ns 32 b CMOS ALU in Double Pass-Transistor Logic”, IEEE JSSC, vol.28, no.11, pp.1145-1150, Nov. 1993.
[26] A. Parameswar, et al., ”A Swing Restored Pass-Transistor Logic-Based Multiply and Accumulate Circuit for Multimedia Application ”, IEEE JSSC, vol.31, no.6, pp.804-809, June. 1996.
[27] K. Yano, et al., “Top-Down Pass-Transistor Logic Design”, IEEE JSSC, vol.31, no.6, pp.792-803, June. 1996.
[28] D. Stroobandt, P. Verplaetse and J. Campenhout, “Generating Synthetic Benchmark Circuits for Evaluating CAD Tools“, IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, Vol. 19, no.9 , pp.1011 –1022, Sept. 2000.
[29] Sadiq M Sait, Habib Youssef., “VLSI PHYSICAL DESIGN AUTOMATION THEORY and Practice, vol-6 ”, World Scientific.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.105.105
論文開放下載的時間是 校外不公開

Your IP address is 3.145.105.105
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code