Responsive image
博碩士論文 etd-0721105-155623 詳細資訊
Title page for etd-0721105-155623
論文名稱
Title
二維與改良型一維光子晶體微共振腔之研製
The Study and Fabrication of 2D amd Modified 1D Photonic Crystal Microcavity
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
75
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-06-22
繳交日期
Date of Submission
2005-07-21
關鍵字
Keywords
光子晶體、電子束微影
E-beam lithography, photonic crystal
統計
Statistics
本論文已被瀏覽 5637 次,被下載 22
The thesis/dissertation has been browsed 5637 times, has been downloaded 22 times.
中文摘要
本論文為利用電子束微影術在InGaAs/GaAs基板上製作二維與改良型一維光子晶體微共振腔。在材料方面,我們使用本實驗室之分子束磊晶所成長之磊晶片,其結構為6個In(0.1875)Ga(0.8125)As量子井所組成,發光波長在1050nm。在本論文中將包含二維與一維光子晶體微共振腔之設計及製程。
在一維光子晶體微共振腔(即DBR雷射)方面,我們設計透過改變共振腔幾何形狀及長度來滿足光在共振腔中的模態藉以提高兩側反射鏡的反射率。在已完成的初步模擬結果中,針對不同的共振腔長度,可發現兩端的反射率有明顯的提升,顯示改變共振腔長度確實有效,並找出具有最佳反射率的數據。未來將會對共振腔的幾何形狀做修正來符合光傳播時的場型,並以此設計做出元件並加以量測。
在二維光子晶體微共振腔方面,我們設計具有TE極化不存在的光子能隙之二維光子晶體,結構為空氣圓柱呈三角晶格方式排列,圓柱半徑為304nm,晶格常數為742nm,並在此光子晶體中製作一點缺陷形成單點缺陷微共振腔。除此之外,我們也設計具有漸變式結構之微共振腔,將中心點缺陷週圍的空氣柱縮小,觀察此種排列方式是否會影響光子晶體微共振腔的特性,我們已完成光子能隙、缺陷模態之計算。
而在製程部份我們使用電子束微影術在光阻上製作圖案,並利用金屬掀離技術製做出之後的蝕刻遮罩,再利用乾蝕刻技術將圖案轉移到底下的介電質及磊晶片上,我們已成功製作出具有深蝕刻結構的DBR雷射及光子晶體微共振腔。
Abstract
In this thesis, we fabricated the 2D photonic crystal and modified 1D photonic crystal microcavity on the InGaAs/GaAs substrate by E-beam lithography. The wafer are grown by molecular beam epitaxy (MBE) on GaAs substrate. The active layer consists of six InGaAs quantum wells at 1050nm emission wavelength.
For the 1D photonic crystal microcavity (DBR laser),we changed the cavity shape and length to match the mode of light in the cavity. It can increase the reflectivity of the laser. In our simulations, we scanned different cavity length and found the corresponding data. We designed two and three pairs of DBRs formed on the edge of laser cavity, respectively. The cavity length is 121µm and the mirror width is 230nm and the air gap is 263nm.
For the 2D photonic crystal (2DPC) microcavity, a triangular array of air columns was adopted. The lattice constant and air columns radius are 742nm and 304nm, respectively. The TE modes photonic band gap of this structure are corresponding to wavelength range in 1026nm ~ 1089nm. We placed single defect in the 2DPCs to form 2DPC microcavities and the corresponding defect modes are 1051.58nm、1053.39nm and 1054.87nm. In addition, we reduced the air columns around the cavity and simulated the photonic bandgap and fabricated the devices by E-beam lithography and deep dry etching process.
目次 Table of Contents
第一章 緒論............................................. 1
1-1 前言......................................... 1
1-2 光子晶體..................................... 1
1-2-1 一維光子晶體.............................. 2
1-2-2 二維光子晶體.............................. 2
1-3 論文架構.................................... 3

第二章 元件設計與模擬................................... 4
2-1 光子晶體介紹................................. 4
2-1-1 何為光子晶體............................ 4
2-1-2 光子晶體中的缺陷........................ 5
2-2 元件設計與模擬............................... 5
2-2-1 磊晶片結構.............................. 5
2-2-2 DBR雷射................................. 7
2-2-3 二維光子晶體........................... 15


第三章 元件製程........................................ 31
3-1 儀器架構.................................... 31
3-2 製程示意圖.................................. 32
3-2-1 DBR邊射型雷射......................... 32
3-2-2 二維光子晶體.......................... 33
3-3 製程步驟及實驗結果.......................... 34
3-3-1 DBR邊射型雷射......................... 34
3-3-2 二維光子晶體.......................... 40

第四章 結論............................................ 49

參考文獻................................................ 50

附錄A 格式化半導體基板之研製........................... 53
參考文獻 References
[1] T. Takagi, “Refractive index of Ga1-xInxAs prepared by vapor-phase epitaxy,” Japanese Journal of Applied Physics, vol. 17, no. 10, p. 1813, 1978.
[2] Bell Laboratories, ”Refractive index of Ga1-xAlxAs” Solid State Communication, vol. 15, p. 59-63, 1974.
[3] R. Jambunathan, and J. Singh, “Design studies for distributed Bragg reflectors for short-cavity edge-emitting lasers,” IEEE Journal of Quantum Electronics, vol. 33, no. 7, p. 1180, 1997.
[4] Bong-Shik Song, S. Noda, T. Asano, Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature material, vol 4,
March 2005, p.207-210.
[5] Y. Akahane, T. Asano, Bong-Shik Song, S. Noda,”High-Q photonic nanocavity in a two-dimentional photonic crystal.” Nature, vol. 425,
October 2003, p. 944-947.
[6] S. Thomas, S. W. Pang, “Dry etching of horizontal distributed Bragg reflector mirrors for waveguide lasers.” J. Vac. Sci. Technol. B149(6),
Nov/Dec 1996, p. 4119-4123.
[7] Y. Arakawa, and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Applied Physics Letters, vol. 40, no. 11, p. 939, 1982.
[8] Y. Sugimoto, N. Ikeda, N. Carlesson, K. Asakawa, N. Kawai, and K. Inoue, “Fabrication and characterization of different types of two-dimensional AlGaAs photonic crystal slabs,” Journal of Applied Physics, vol. 91, no. 3, p. 922, 2002.



[9] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Physical Review Letters, vol. 58, no. 20, p. 2059, 1987.
[10] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Physical Review Letters, vol. 58, no. 23, p. 2486, 1987.
[11] E. Yablonovitch, “How to be truly photonic,” Science, vol. 289, p. 557, 2000.
[12] J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature, vol. 386, p. 143, 1997.
[13] S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature, vol. 407, p. 608, 2000.
[14] O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science, vol. 284, p. 1819, 1999.
[15] K. Shin, M. Tamura, A. Kasukawa, N. Serizawa, S. Kurihashi, S. Tamura, and S. Arai, “Low threshold current density operation of GaInAsP-InP laser with multiple reflector microcavities,” IEEE Photonics Technology Letters, vol. 7, p. 1119, 1995.
[16] T. Baba, M. Hamasaki, N. Watanabe, P. Kaewplung, A. Matsutani, T. Mukaihara, F. Koyama, and K. Iga, “A novel short-cavity laser with deep-grating distributed Bragg reflectors,” Japanese Journal of Applied Physics, vol. 35, part 1, no. 2B, p. 1390, 1996.
[17] E. H
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.189.180.76
論文開放下載的時間是 校外不公開

Your IP address is 18.189.180.76
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code