Responsive image
博碩士論文 etd-0721105-161946 詳細資訊
Title page for etd-0721105-161946
論文名稱
Title
以液相沉積法生長等效厚度低於1奈米之鋇摻雜鈦矽氧化膜
Barium Doped Titanium Silicon Oxide with Equivalent Oxide Thickness below 1 nm Prepared by Liquid Phase Deposition
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
209
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-07-12
繳交日期
Date of Submission
2005-07-21
關鍵字
Keywords
液相沉積法、鋇摻雜鈦矽氧化膜、等效氧化厚度
Barium doped titanium silicon oxide films, Liquid phase deposition (LPD), Equivalent oxide thickness (EOT)
統計
Statistics
本論文已被瀏覽 5708 次,被下載 0
The thesis/dissertation has been browsed 5708 times, has been downloaded 0 times.
中文摘要
根據硝酸可增進鈦矽氧化膜的生長速率及使介電材料極化可提昇介電常數的概念,以液相沉積法發展等效氧化層厚度低於1奈米且具有高介電係數之鋇摻雜鈦矽氧化膜是本研究的主旨。在本研究中,原料之一的硝酸鋇溶液,其莫耳濃度對於鋇摻雜鈦矽氧化膜之沉積速率、折射率及介電係數的影響扮演著極重要的角色。薄膜電性可藉由熱退火處理而有效的改善。以液相沉積法所製備的鋇摻雜鈦矽氧化膜在實際光學厚度為7.4 奈米下具有最佳等效氧化層厚度0.9奈米。其介電係數可高達31.9且漏電流在電場強度5 MV/cm之下為5 × 10-6 A/cm2 。本研究所發展之等效厚度低於1奈米的鋇摻雜鈦矽氧化膜對於下一世代的應用有良好的發展性。
Abstract
High dielectric constant barium doped titanium silicon oxide films with equivalent oxide thickness below 1 nm can be prepared by liquid phase deposition. We learn from this research that the deposition rate of titanium silicon oxide films can be much enhanced by nitric acid incorporation, and the dielectric constant of materials can be increased by the dipole polarization from barium. The key parameter for the deposition rate, refractive index, and the dielectric constant of barium doped titanium silicon oxide is the molarity of barium nitrate. The electrical properties can be improved effectively by thermal annealing treatments. The optimum equivalent oxide thickness of barium doped titanium silicon oxide thin film is 0.9 nm with the optical thickness of 7.4 nm. The high dielectric constant can reach 31.9 and the leakage current density is 5 × 10-6 A/cm2 at the electrical field intensity of 5 MV/cm, which has high potential application for the next generation MOSFET.
目次 Table of Contents
CONTENTS
CHAPTER 1 1
INTRODUCTION 1
1-1 Technology Requirements for MOSFET 1
1-2 High Dielectric Constant Materials 3
1-3 Various Techniques for TiO2 Preparation 5
1-4 Advantages of Amorphous Films 6
1-5 Binary System of TiO2-SiO2 6
1-6 Titanium Silicon Oxide (TixSi(1-x)Oy) 8
1-7 Advantages of Liquid Phase Deposition 9
1-8 Background of Liquid Phase Deposition Technique in Our Lab 10
1-8.1 LPD-SiO2 10
1-8.2 LPD-SiON and Biased-LPD-SiON 11
1-8.3 LPD-TiO2 12
1-8.4 LPD-Barium Titanate (BTO) 13
1-8.5 LPD-TixSi(1-x)Oy 17
1-9 Aims of this Study 19
1-9.1 Motivation 19
1-9.2 Mechanism of Chemically Etching Si by HNO3-HF Mixture 21
1-9.3 Function of Barium Incorporation in Dielectric Material 22
CHAPTER 2 23
EXPERIMENTS 23
2-1 Deposition System 23
2-2 Cleaning of Silicon Substrate 25
2-3 Preparation of Deposition Solutions 26
2-3.1 Preparation of the Precursor Solutions 26
2-3.2 Deposition Solution Process for LPD-TixSi(1-x)Oy Films 29
2-3.3 Deposition Solution Process for Ba doped LPD-TixSi(1-x)Oy Films 29
2-4 Films Depositions 30
2-5 Characteristics 31
2-5.1 Physical Properties 31
2-5.2 Chemical Properties 31
2-5.3 Electrical Properties 32
CHAPTER 3 36
RESULTS AND DISCUSSION 36
PART I: Preparation of LPD-TixSi(1-x)Oy Films with HNO3 Incorporation 37
3-1 Mechanism of LPD-TixSi(1-x)Oy Deposition 37
3-1.1 Structure and Morphology of LPD-TixSi(1-x)Oy Film 37
3-1.2 Preparation of LPD-TixSi(1-x)Oy Film 40
3-1.3 Proposed Chemical Equilibriums of LPD-TixSi(1-x)Oy Film 41
3-1.4 Growth Mechanism of LPD-TixSi(1-x)Oy Films 41
3-2 Physical Properties of As-deposited LPD-TixSi(1-x)Oy Films 44
3-2.1 Deposition Rate as a Function of HNO3 Molarity 44
3-2.2 Relationship between Refractive Index and Deposition Rate with HNO3 Molarity 46
3-3 Chemical Properties of As-deposited LPD-TixSi(1-x)Oy Films 48
3-3.1 ESCA Analysis of LPD-TixSi(1-x)Oy Film 48
3-3.2 SIMS Depth Profile of LPD-TixSi(1-x)Oy Film 52
3-3.3 Analysis of FTIR Spectra 53
3-4 Electrical Characteristics of As-deposited LPD-TixSi(1-x)Oy Films 57
3-4.1 C-V Characteristics 57
3-4.2 Relationship between Dielectric Constant and Deposition Rate with HNO3 Molarity 60
3-4.3 J-E Characteristics 62
3-5 Tentative Conclusions of LPD-TixSi(1-x)Oy Films Prepared with HNO3 Incorporation 64
PART II: Development of Ba doped LPD-TixSi(1-x)Oy Films 65
3-6 Mechanism of Ba doped LPD-TixSi(1-x)Oy Deposition 65
3-6.1 Structure and Morphology of Ba doped LPD-TixSi(1-x)Oy Film 65
3-6.2 Preparation of Ba doped LPD-TixSi(1-x)Oy Films 68
3-6.3 Proposed Chemical Equilibriums of Ba doped LPD-TixSi(1-x)Oy Film 69
3-6.4 Growth Mechanism of Ba doped LPD-TixSi(1-x)Oy Films 71
3-7 Physical Properties of As-deposited Ba doped LPD-TixSi(1-x)Oy Films 74
3-7.1 Relationship between Refractive Index and Deposition Rate with Ba(NO3)2 Molarity 74
3-8 Chemical Properties of As-deposited Ba doped LPD-TixSi(1-x)Oy Films 76
3-8.1 ICP-MS Analysis of the Deposition Solution for Ba doped LPD-TixSi(1-x)Oy Film 76
3-8.2 SIMS Depth Profile of Ba doped LPD-TixSi(1-x)Oy Film 78
3-8.3 AES Depth Profile of Ba doped LPD-TixSi(1-x)Oy Film 79
3-8.4 Analysis of FTIR Spectra 81
3-9 Electrical Characteristics of As-deposited Ba doped LPD-TixSi(1-x)Oy Films 87
3-9.1 C-V Characteristics 87
3-9.2 Relationship between Dielectric Constant and Ba(NO3)2 Molarity 89
3-9.3 J-E Characteristics 91
3-10 Electrical Properties of Ba doped LPD-TixSi(1-x)Oy Film after Thermal Annealing 93
3-10.1 Structure of Ba Doped LPD-TixSi(1-x)Oy Films after Annealing in O2 Ambient 96
3-10.2 FTIR Spectra of Ba doped LPD-TixSi(1-x)Oy Films after Thermal Annealing 98
3-10.3 Thickness Variation of Ba doped LPD-TixSi(1-x)Oy Films after Thermal Annealing 100
3-10.4 Improvements of Electrical Properties by Thermal Annealing 102
3-11 Tentative Conclusions from Characteristics of Ba doped LPD-TixSi(1-x)Oy Films 117
PART III: Ba doped LPD-TixSi(1-x)Oy Thin Films with EOT Application 120
3-12 Equivalent Oxide Thickness (EOT) of Ba doped LPD-TixSi(1-x)Oy Film 121
3-13 Preparation of Ba doped LPD-TixSi(1-x)Oy Thin Film 124
3-14 Characteristics of Ba doped LPD-TixSi(1-x)Oy Thin Film 126
3-14.1 Deposition Rate of Ba doped LPD-TixSi(1-x)Oy Thin Films as a Function of Deposition Time 126
3-14.2 Analysis of Structure and Components of Ba doped LPD-TixSi(1-x)Oy Thin Films 128
3-14.3 Absorption Spectra of Ba doped LPD-TixSi(1-x)Oy Thin Films 131
3-14.4 Electrical Properties of Ba doped LPD-TixSi(1-x)Oy Thin Films Annealed in N2 Ambient 133
3-14.5 Electrical Properties of Ba doped LPD-TixSi(1-x)Oy Thin Films Annealed in N2O Ambient 138
3-14.6 Electrical Properties of Ba doped LPD-TixSi(1-x)Oy Thin Films Annealed in O2 Ambient 142
3-14.7 Summarizing Electrical Properties of Ba doped LPD-TixSi(1-x)Oy Thin Films by Thermal Annealing 146
3-15 Electrical Properties of Ba doped LPD-TixSi(1-x)Oy Thin Film by Various Annealing Temperatures in O2 Ambient 151
3-15.1 Structural Analysis of Ba doped LPD-TixSi(1-x)Oy Thin Films Annealed at 500 ºC, 600 ºC, and 700 ºC 153
3-15.2 FTIR Spectra of Ba doped LPD-TixSi(1-x)Oy Thin Films Annealed at 500 ºC, 600 ºC, and 700 ºC 154
3-15.3 Absorption Spectra of Ba doped LPD-TixSi(1-x)Oy Thin Films after Thermal Annealing 156
3-15.4 Electrical Properties of Ba doped LPD-TixSi(1-x)Oy Thin Films Annealed at 500 ºC, 600 ºC, and 700 ºC 158
3-16 Tentative Conclusions of Ba doped LPD-TixSi(1-x)Oy Thin Films for EOT Application 169
CHAPTER 4 172
CONCLUSIONS 172
REFERENCES 175
參考文獻 References
[1] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-k dielectrics: Current status and materials properties considerations,” J. Appl. Phys., vol. 89, pp. 5243-5275, 2001.
[2] E. Y. Wu, E. J. Nowak, A. Vayshenker, W. L. Lai, and D. L. Harmon, “CMOS scaling beyond the 100-nm node with silicon-dioxide-based gate dielectrics,” IBM J. Res. Dev., vol. 46, pp. 287-298, 2002.
[3] D. A. Buchanan, “Scaling the gate dielectric: Materials, integration, and reliability,” IBM J. Res. Dev., vol. 43, pp. 245-264, 1999.
[4] M. Depas, R. Degraeve, T. Nigam, G. Groeseneken, and M. Heyns, “Reliability of Ultra-Thin Gate Oxide Below 3 nm in the Direct Tunneling Regime,” Jpn. J. Appl. Phys. Part I, vol. 36, pp. 1602-1608, 1997.
[5] Yuan Taur, Tak H. Ning, Fundamentals of Modern VLSI Devices, p. 96, Oct. 13, 1998.
[6] H. Sim, S. Jeon, and H. Hwanf, “Electrical Characteristics of TiO2/ZrSixOy stack Gate Dielectric for Metal-Oxide-Semiconductor Device Applications,” Jpn. J. Appl. Phys. Part 1, vol. 40, No. 12, pp. 6803-6804, 2001.
[7] T. Ngai, W. J. Qi, R. Sharma, J. Fretwell, X. Chen, J. C. Lee, and S. Banerjee, “Electrical properties of ZrO2 gate dielectric on SiGe,” Appl. Phys. Lett., vol. 76, pp. 502-504, 2000.
[8] H. Iwai, “CMOS downsizing toward sub-10 nm,” Solid-State Electron., vol. 48, pp. 497-503, 2004.
[9] T. Inoue, T. Ohsuna, Y. Obara, Y. Yamamoto, M. Yamamoto, M. Satoh, and Y. Sakurai, “Intermediate Amorphous Layer Formation Mechanism at the Interface of Epitaxial CeO2 Layers and Si Substrates,” Jpn. J. Appl. Phys. Part 1, vol. 32, pp. 1765-1767, 1993.
[10] L. Manchanda and M. Gurvitch, “Yttrium oxide/silicon dioxide: a new dielectric structure for VLSI/ULSI circuits,” IEEE Electron Device Lett., vol. 9, pp. 180-182, 1988.
[11] K. P. Pande, V. K. R. Nair, and D. Gutierrez, “Plasma enhanced metal-organic chemical vapor deposition of aluminum oxide dielectric film for device applications,” J. Appl. Phys., vol. 54, pp. 5436-5440, 1983.
[12] P. K. Roy and I. C. Kizilyalli, “Stacked high-ε gate dielectric for gigascale integration of metal–oxide–semiconductor technologies,” Appl. Phys. Lett., vol. 72, pp. 2835-2837, 1998.
[13] C. S. Kang, R. Choi, H. J. Cho, Y. H. Kim, and J. C. Lee, “Scaling down of ultrathin HfO2 gate dielectrics by using a nitrided Si surface,” J. Vac. Sci. Technol. B, vol. 22, No. 3, pp. 916-919, 2004.
[14] J. Koo, Y. Kim, and H. Jeon, “ZrO2 Gate Dielectric Deposited by Plasma-Enhanced Atomic Layer Deposition Method,” Jpn. J. Appl. Phys. Part 1, vol. 41, pp. 3043-3046, 2002.
[15] H. Kim, D. C. Gilmer, S. A. Campbell, and D. L. Polla, “Leakage current and electrical breakdown in metal-organic chemical vapor deposited TiO2 dielectrics on silicon substrates,” Appl. Phys. Lett., vol. 69, pp. 3860-3862, 1996.
[16] Y. Jeon, B. H. Lee, K. Zawadzki, W. Qi, and J. C. Lee, “Effect of Barrier Layer on the Electrical and Reliability Characteristics of High-k Gate Dielectric Films,” Tech. Dig. Int. Electron Devices Meet., pp. 797-800, 1998.
[17] R. M. Wallace, University of North Texas.
[18] Jack C. Lee, “Ultra-thin gate dielectrics and High-k dielectrics,” IEEE EDS vanguard series of independent short courses.
[19] H. Tang, K.Prasad, R. Sanjinès, P. E. Schmid, and F. Lévy, “Electrical and optical properties of TiO2 anatase thin films,” J. Appl. Phys., vol. 75, pp. 2042-2047, 1994.
[20] P. Alexandrov, J. Koprinarova, and D. Todorov, “Dielectric properties of TiO2-films reactively sputtered from Ti in an RF magnetron,” Vacuum, vol. 47, pp. 1333-1336, 1996.
[21] N. Rasusch and E. P. Burt, “Thin high-dielectric TiO2 films prepared by low pressure MOCVD,” Engineering, vol. 19, p. 725, 1992.
[22] S. C. Sun and T. F. Chen, “Effects of electrode Materials and Annealing Ambients on the Electrical Properties of TiO2 Thin Films by Metalorganic Chemical Vapor Deposition,” Jpn. J. Appl. Phys. Part 1, vol. 36, pp. 1346-1350, 1997.
[23] S. Chambers, Y. Gao, S. Thevuthasan, Y. Liang, N. R. Shivaparan, and R. J. Smith, “Molecular beam epitaxial growth and characterization of mixed (Ti, Nb)O2 rutile films on TiO2(100),” J. Vac. Sci. Technol. A, vol. 14, Iss. 3, pp. 1387-1394, 1996.
[24] E. Haro-Poniatowski, R. Rodr´guez-Talavera, M. de la Cruz Heredia, O. Cano-Corona, and R. Arroyo-Murillo, “Crystallization of nanosized titania partides prepared by the sol-gel process”, J. Mater. Res., vol. 9, p. 2102-2108, 1994.
[25] D. Mardare and G. I. Rusu, “Structural and electrical properties of TiO2 RF sputtered thin films,” Mater. Sci. & Engin., vol. B75, pp. 68-71, 2000.
[26] X. H. Xu, M. Wang, Y. Hou, et al., “Effect of Thermal Annealing on Structural Properties, Morphologies and Electrical Properties of TiO2 Thin Films Grown by MOCVD,” Cryst. Res. Technol., vol. 37, pp. 431-439, 2002.
[27] J. D. Deloach, G. Scarel, and C. R. Aita, “Correlation between titania film structure and near ultraviolet optical absorption,” J. Appl. Phys., vol. 85, pp. 2377-2384, 1999.
[28] H. B. Sharma and H. N. K. Sarma, “Electrical Properties of Sol-Gel Processed Barium Titanate Films,” Thin Solid Films, vol. 330, Iss. 2, pp. 178-182, 1998.
[29] G. D. Wilk and R. M., Wllace, “Electrical properties of hafnium silicate gate dielectrics deposited directly on silicon,” Appl. Phys. Lett., vol. 74, pp. 2854-2856, 1999.
[30] H. Shin, M. R. De Guire, and A. H. Heuer, “Electrical Properties of TiO2 thin films formed on self-assembled organic monolayers on silicon” J. Appl. Phys., vol. 83, pp. 3311-3317, 1997.
[31] W. -T. Liu, S. T. Lakshmikumae, D. B. Knorr, T. -M. Lu, and Ir. Gerard A. van der Leeden, “Deposition of amorphous BaTiO3 optical films at low temperature,” Appl. Phys. Lett., vol. 63, pp. 574-576, 1993.
[32] Q. X. Jia, L. H. Chang, and W. A. Anderson, “Low leakage current BaTiO3 thin film capacitors using a multilayer construction,” Thin Solid Films, vol. 259, pp. 264-269, 1995.
[33] T. Fuyuki and H. Matsunami, “Electronic properties of the interface between Si and TiO2 deposited at very low temperatures,” Jpn. J. Appl. Phys., vol. 25, pp. 1288-1291, 1986.
[34] J. Pascual, J. Camassel, and H. Mathieu, “Fine structure in the intrinsic absorption edge of TiO2,” Phys. Rev. B, vol. 18, pp. 5606-5614, 1978.
[35] S. A. Campbell, D. C. Gilmer, X. C. Wang, M. T. Hsieh, H. S. Kim, W. L. Gladfelter, and J. Yan, “MOSFET Transistors Fabricated with High Permitivity TiO2 Dielectrics,” IEEE Trans. Electron Devices Lett., vol. 44, No. 1, 1997.
[36] J. W. Keister, J. E. Rowe, J. J. Kolodziej, H. Niimi, T. E. Madey, and G. Lucovsky, “Structure of ultrathin SiO2/Si(111) interfaces studied by photoelectron spectroscopy,” J. Vac. Sci. Technol. A, vol. 17, pp. 1250-1257, 1999.
[37] S. A. Campbell, H. S. Kim, D. C. Gilmer, B. He, T. Ma, and W. L. Gladfelter, “Titanium dioxide (TiO2)-based gate insulators,” IBM J. Res. Dev., vol. 43, pp. 383-392, 1999.
[38] C. C. Fulton, G. Lucovsky, and R. J. Nemanich, “Electronic states at the interface of Ti-Si oxide on Si(100),” J. Vac. Sci. Technol. B, vol. 20, No. 4, pp. 1726-1731, 2002.
[39] H. Sankur, W. Gunning, and J. Denatle, “Intrinsic stress and structural properties of mixed composition thin films,” Appl. Opt., vol. 27, pp. 1564-1567, 1988.
[40] B. H. Lee, Y. Jeon, K. Zawadzki, W. J. Qi, and J. Lee, “Effects of interfacial layer growth on the electrical characteristics of thin titanium films on silicon,” Appl. Phys. Lett., vol. 74, pp. 3143-3145, 1999.
[41] J. S. Chen, S. Chao, J. S. Kao, H. Niu, and C. H. Chen, “ Mixed films of TiO2-SiO2 deposited by double electron-beam coevaporation,” Appl. Opt., vol. 35, pp. 90-96, 1996.
[42] S. Chao, W. H. Wang, M. Y. Hsu, and L. C. Wang, “Characteristics of ion-beam-sputtered high-refractive-index TiO2-SiO2 mixed films,” J. Opt. Soc. Am. A, vol. 16, pp. 1477-1483, 1999.
[43] R. C. Smith, N. Hoilien, C. Dykstra, S. A. Campbell, J. T. Roberts, and W. L. Gladfelter, “CVD of TixSi1-xO2 Films: Precursor Chemistry Impact Film Compoition,” Chem. Vap. Deposition, vol. 9, pp. 79-86, 2003.
[44] T. Kamada, M. Kitagawa, M. Shibuya, and T. Hirao “Structure and Properties of silicon Titanium Oxide Films Prepared by Plasma-Enhanced Chemical Vapor Deposition Method,” Jpn. J. Appl. Phys. Part 1, vol. 30, pp. 3594-3596, 1991.
[45] X. Wang, H. Masumoto, Y. Someno, and T. Hirai, “Microstructure and optical properties of amorphous TiO2-SiO2 composite films synthesized by helicon plasma sputtering,” Thin Solid Films, vol. 338, pp. 105-109, 1999.
[46] D. K. Sarkar, E. Desbiens, and M. A. El Khakani, “High-k titanium silicate dielectric thin films grown by pulsed-laser deposition,” Appl. Phys. Lett., vol. 80, pp.294-296, 2002.
[47] J. J. Cheng and D. W. Wang, “Structural Transformation of the TiO2-SiO2 System Gel During Heat-Treatment,” J. Non-Cryst. Solids, vol. 100, pp. 288-291, 1988.
[48] T. Hanada, T. Aikawa, and N. Soga, “Physical properties and structure of rf-sputtered amorphous films in the system titania-silica,” J. Am. Ceram. Soc., vol. 67, pp. 52-56, 1984.
[49] P. H. Giauque, H. B. Cherry, and M. -A. Nicolet, “Thermal stability of amorphous Ti3Si1O8 thin films,” Microelectron. Eng., vol. 55, pp. 183-188, 2001.
[50] C. Harnagea, M. Alexe, J. Schilling, J. Chol, R. B. Wehrspohn, D. Hesse, and U. Gösele, “Mesoscopic ferroelectric cell arrays prepared by imprint lithography,” Appl. Phys. Lett., vol. 83, pp. 1827-1829, 2003.
[51] H. Nagayama, H. Honda, and H. Kamahara, “A New Process for Silica Coating,” J. Electrochem. Soc., vol. 135, Iss. 8, pp. 2013-2016, 1988.
[52] C. J. Huang, M. P. Houng, Y. H. Wang, and H. H. Wang, “Effect of chemical modification on growth silicon dioxide films on gallium arsenide prepared by the liquid phase deposition method,” J. Appl. Phys., vol. 86, pp. 7151-7155, 1999.
[53] M. K. Lee, C. H. Lin, C. N. Yang, and C. D. Yang, “The Improvement of Liquid Phase Deposition of Silicon Dioxide with Hydrochloric Acid Incorporation”, Jpn. J. Appl. Phys. Part 1, vol. 37, No. 6A, pp. L682-683, 1998.
[54] M. K. Lee, S. Y. Lin, and J. M. Shyr, “Characteristics of Oxynitride Prepared by Liquid Phase Deposition,” J. Electrochem. Soc., vol. 148, pp. F1-F4, 2001.
[55] M. K Lee, W. H. Shieh, C. M. Shih, S. Y. Lin, and K. W. Tung, “High Quality Fluorinated Silicon Dioxide Films Prepared by Temperature-Difference-Based Liquid-Phase Deposition with Ammonium Hydroxide Incorporation,” J. Electrochem. Soc, vol. 150, No. 3, pp. F29-F32, 2003.
[56] M. K. Lee and B. H. Lei, “Characterization of Titanium Oxide Films Prepared by Liquid Phase Deposition Using Hexafluorotitanic Acis,” Jpn. J. Appl. Phys. Part 2, vol. 39, No. 2A, pp. L101-L103, 2000.
[57] M. K. Lee, C. M. Shih, and W. H. Shieh, “Characteristics and growth mechanisms of TixSi(1-x)Oy films by liquid phase deposition,” Appl. Phys. A, vol. 74, pp. 249-251, 2002.
[58] M. K. Lee, H. C. Liao, K. W. Tung, C. M. Shih, and T. H. Shih, “Liquid-phase-deposited Barium Titanate Thin Films on Silicon,” J. Phys. D, vol. 35, pp. 61-64, 2002.
[59] M. K. Lee, K. W. Tung, C. C. Cheng, H. C. Liao, and C. M. Shih, “Deposition of Barium Titanate Films on Silicon by Barium Fluotitanate Powder,” J. Phys. Chem. B, vol. 106, pp. 4963-4966, 2002.
[60] C. A. Wamser, “Equilibria in the System Boron Trifluoride--Water at 25°,” J. Am. Chem. Soc., vol. 73, pp. 409-416, 1951.
[61] R. H. Schmitt, E. L. Glove, and R. D. Brown, “The Equivalent Conductance of the Hexafluorocomplexes of Group IV (Si, Ge, Sn, Ti, Zr, Hf),” J. Am. Chem. Soc., vol. 82, pp. 5292-5295, 1960.
[62] D. R. Turner, “On the Mechanism of Chemically Etching Germanium and Silicon,” J. Electrochem. Soc., vol. 107, pp. 810-816, 1960.
[63] R. H. Cole, “Dielectric Constant and Interaction of Polar Molecules,” J. Chem. Phys., vol. 39, pp. 2602-2609, 1963.
[64] H. L. Schwart, T. M. Miller, and B. Bederson, “Measurement of the electric dipole polarizabilities of barium and strontium,” Phys. Rev. A, vol. 10, pp. 1924-1926, 1974.
[65] J. M. Wu and C. J. Chen, “Dielectric Properties of (Ba, Nb) doped TiO2 ceramics: Migration mechanism and roles of (Ba, Nb),” J. Mater. Sci., vol. 23, pp. 4157-4164, 1988.
[66] H. Robbins and B. Schwartz, “Chemical Etching of Silicon II, the System HF, HNO3, H2O and HC2H3O2,” J. Electrochem. Soc., vol. 107, pp. 108-111, 1960.
[67] K. J. Hong, W. S. Jung, Y. K. Min, and T. S. Kim, “The Polarization Characteristics of (Ba Ca) TiO3 Dielectrics,” Proceeding of the International Conference on Properties and Applications of Dielectric Materials, 1997, Korea.
[68] E. L. Snow, M. A. Gearba, R. A. Komara, and S. R. Lundeen, “Determination of dipole and quadruple polarizabilities of Ba+ measurement of the fine structure of high-L n = 9 and 10 Rydberg states of barium”, Phys. Rev. A, vol. 71, pp. 022510-1~13, 2005.
[69] S. K. Ghandhi, “Etching and Cleaning,” VLSI Fabrication Principles (2nd ed.), Wiley Interscience, New York, 1994.
[70] Raymond Chang, “Chapter 4: 4.4 Concentration and Dilution of Solutions”, Chemistry (fifth edition), p. 136, McGraw-Hill, New York, 1994.
[71] David R. Lide, ”Aqueous Solubility of Inorganic Compounds at Various Temperatures”, HANDBOOK of CHEMISTRY and PHYSICS, 80TH, CRC Press, vol. 8, p. 105, 1999-2000.
[72] T. Homma, T. Katoh, Y. Yamada, and Y. Murao, “A Selective SiO2 Film-Formation Technology Using Liquid-Phase Deposition for Fully Planarized Multilevel Interconnections,” J. Electrochem. Soc., vol. 140, pp. 2410-2413, 1993.
[73] H. Kishimoto, K. Takahama, N. Hashimoto, Y. Aoi, and S. Deki, “Photocatalytic activity of titanium oxide prepared by liquid phase deposition (LPD),” J. Mater. Chem., vol. 8, pp. 2019-2024, 1998.
[74] S. K. Ghandi, “VLSI Fabrication Principles,” Wiley New York, pp. 478-482, 1983.
[75] S. Hofmann, “Characterization of nitride coatings by Auger electron spectroscopy and X-ray photoelectron spectroscopy,” J. Vac. Sci. Technol. A, vol. 4, pp. 2789-2796, 1986.
[76] Y. N. Sun, A. Feldman, and E. N. Farabaugh, Thin Solid Films, vol. 157, p. 351, 1988.
[77] D. K. Sarkar, E. Desbiens, and M. A. Ei Khakani, “High-k titanium silicate dielectric thin films grown by pulsed-laser deposition,” Appl. Phys. Lett., vol. 80, pp. 294-296, 2002.
[78] K. Wittmaack, “Ion-induced electron emission as a means of studying energy- and angle-dependent compositional changes of solids bombarded with reactive ions: I. Oxygen bombardment of silicon,” Surf. Sci., vol. 419, pp. 249-264, 1999.
[79] H. W. Werner, “Microelectronic Materials and Processes,” Herausgeber R. A. Levy, Kluwer Academic Publishers, Chap. 16, p. 895, 1989.
[80] D. V. Tsu, G. Lucovsky, and M. J. Mamtimi, “Local Atomic Strutcure in Thin Films of Silicon Nitride and Silicon Diimide Produced by remote Plasma-enhanced Chemical-vapor Deposition,” Phys. Rev. B, vol. 33, pp. 7069-7076, 1986.
[81] C. F. Yeh, C. L. Chen, and G. H. Lin, “The Physicochemical Properties and Growth Mechanism of Oxide (SiO2-xFx) by Liquid Phase deposition with H2O Addition Only,” J. Electrochem. Soc., vol. 141, No. 11, pp. 3177-3181, 1994.
[82] W. J. Chang, M. P. Houng, and Y. H. Wang, “Fourier Transform Infrared Characterization of Moisture Absorption on SiOF Films,” Jpn. J. Appl. Phys., vol. 38, pp. 4642-4647, 1999.
[83] D. A. Scarpiello and W. J. Cooper, “Heat of Solution of Boron Trifluoride in Water and Aqueous Hydrofluoric Acid,” J. Chem. & Engineer. Data, vol. 9, pp. 364-365, 1964.
[84] G. Lucovsky, R. J. Nemanich, and J. C. Knights, “Structural interpretation of the vibrational spectra of a-Si: H alloys,” Phys. Rev. B, vol. 19, pp. 2064-2073, 1979.
[85] M. Yoshimaru, S. Koizumi, and K. Shmokawa, “Structure of Fluorine-doped Silicon Oxide Films Deposited by Plasma-enhanced Chemical Vapor Deposition,” J. Vac. Sci. Technol. A, vol. 15, No. 6, pp. 2908-2914, 1997.
[86] P. Lange, H. Bernt, E. Hartmannsgruber, and F. Naumann, “Growth Rate and Characterization of Silicon Oxide Films Grown in N2O Atmosphere in a Rapid Thermal Processor,” J. Electrochem. Soc., vol. 141, pp. 259-263, 1994.
[87] V. G. Erkov, S. F. Devyatova, E. L. Molodstova, T. V. Malsteva, U. A. Yanovskii, “Si-TiO2 interface evolution at prolonged annealing in low vacuum or N2O ambient,” Appl. Surf. Sci., vol. 166, pp. 51-56, 2000.
[88] Y. Gao, “In-situ IR and spectroscopic ellipsometric analysis of growth process and structural properties of Ti1-xNbxO2 thin films by metal-organic chemical vapor deposition,” Thin Solid Films, vol. 346, pp. 73-81, 1999.
[89] H. Sankur and W. Gunning “Sorbed water and intrinsic stress in composite TiO2-SiO2 films,” J. Appl. Phys., vol. 66, pp. 807-812, 1989.
[90] B. C. Kang, S. B. Lee, and J. H. Boo, “Growth of TiO2 thin films on Si(100) substrates using single molecular precursors by metal organic chemical vapor deposition,” Surf. Coat. Technol., vol. 131, pp. 88-92, 2000.
[91] L. Fu, K. Liu, B. Zhang, J. Chu, H. Wang, and M. Wang, “Capacitance–voltage characteristics of Bi4Ti3O12/p-Si interface,” Appl. Phys. Lett., vol. 72, pp. 1784-1786, 1998.
[92] T. C. Yang and K. C. Saraswat, “Effect of Physical Stress on the Degradation of Thin SiO2 Films Under Electrical Stress,” IEEE Trans. Electron Device, vol. 47, pp. 746-755, 2000.
[93] L. Martinu and D. Poitras, “Plasma deposition of optical films and coatings: A review,” J. Vac. Sci. & Technol. A, vol. 18, pp. 2619-26945, 2000.
[94] J. R. Meyer-Arendt, “Introduction to Classic and Modern Optics,” 3rd Edition, Prentice-Hall Inc., 1972.
[95] C. J. Simmons and J. H. Simmons “Chemical Durability of Fluoride Glasses: I, Reaction of Fluorozirconate Glasses with Water,” J. Am. Ceram. Soc., vol. 69, pp. 661-669, 1986.
[96] W. A. Pliskin, "Comparison of properties of dielectric films deposited by various methods," J. Vac. Sci. Technol., vol. 41, pp. 1064-1081, 1977.
[97] P. M. Kumar, S. Badrinarayanan, and M. Sastry, “Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states,” Thin Solid Films, vol. 358, pp. 122-130, 2000.
[98] J. J. Cheng and D. W. Wang, “Structure Transformation of the TiO2-SiO2 System Gel During Heat-treatment”, J. Non-cryst. Sol., vol. 100, pp. 288-291, 1988.
[99] J. J. Cheng and J. M. Wu, “Effect of Powder Characteristics on Electrical Properties of (Ba, Bi, Nb)-Added TiO2 Ceramics,” Jpn. J. Appl. Phys., vol. 35, pp. 4704-4710, 1996.
[100] C. F. Yeh, C. L. Chen, W. Lur, and P. W. Yen, “Bond-structure changes of liquid phase deposited oxide (SiO2-xFx) on N2 annealing,” Appl. Phys. Lett., vol. 66, pp. 938-940, 1995.
[101] E. C. Carr, K. A. Ellis, and R. A. Buhrman, “N depth profiles in thin SiO2 grown or processed in N2O: The role of atomic oxygen,” Appl. Phys. Lets., vol. 66, pp. 1492-1494, 1995.
[102] Y. H. Kim, M. S. Hwang, H. J. Kim, J. Y. Kim, and Y. Lee, “Infrared spectroscopy study of low-dielectric-constant fluorine-incorporated and carbon-incorporated silicon oxide films” J. Appl. Phys., vol. 90, pp. 3367-3370, 2001.
[103] J. Shi, L. Wu, X. Huang, J. Liu, Z. Ma, W. Li, x. Li, J. Xu, D. Wu, A. Li, and K. Chen, “Electron and hole charging effect of nanocrystalline silicon in double-oxide barrier structure,” Solid State Commun., vol. 123, pp. 437-440, 2002.
[104] Y. Okada, P. J. Tobin, V. Lakhotia, W. A. Feil, S. A. Ajuria, and R. I. Hegde, “Relationship between growth conditions, nitrogen profile, an charge to breakdown of gate oxynitrides grown from pure N2O,” Appl. Phys. Lett., vol. 63, pp. 194-196, 1993.
[105] D. H. Lee, Y. S. Cho, W. I. Yi, T. S. Kim, J. K. Lee, and H. J. Jung, "Metalorganic chemical vapor deposition of TiO2 : N anatase thin film on Si substrate," Appl. Phys. Lett., vol. 66, pp. 815-816, 1995.
[106] S. Wolf and R. N. Tauber, “Silicon Processing for The VLSI Era,” vol. 1, Lattice Press, p. 57, 1986.
[107] D. L. Heald, R. M. Das, and R. P. Khosla, “Influence of Trichloroethylene on Room Temperature Flatband Voltages of MOS Capacitors,” J. Electrochem. Soc., vol. 123, pp. 302-303, 1976.
[108] L. C. Parrillo, “VLSI Process Integration,” in S. M. Sze, Ed., “VLSI Technology” 2nd Edition, McGraw-Hill International Book Company, New York, 1988.
[109] W. S. Lu and J. G. Hwu, “Reliable fluorinated thin gate oxides prepared by liquid phase deposition following rapid thermal process,” IEEE Electron Device Lett., vol. 17, pp. 172-174, 1996.
[110] Jerzy Ruzyllo, “Semiconductor Glossary,” Prosto Multimedia Publishing; 1st edition, USA, 2004.
[111] F. Ootsuka, “An Engineering Method to Extract Equivalent Oxide Thickness and its Extension to Channel Mobility Evaluation,” IEEE Trans. Electron Devices, vol. 49, No. 12, pp. 2345-2348, 2002.
[112] Y. I. Ukhanov, “Optical Properties of Semiconductor,” Nauka, Moskow, 1977.
[113] Y. C. Song, Y. Hasegawa, S. J. Yang, and M. Sato, “Ceramic fibers from polymer precursor containing Si-O-Ti bonds,” J. Mater. Sci., vol. 23, pp. 1911-1920, 1988.
[114] M. M. Rahman, K. M. Krishna, T. Soga, T. Jimbo, and M. Umeno, J. Phys. Chem. Solids, vol. 60, pp. 201-210, 1999.
[115] P. Li, J. F. McDonald, and T. –M. Lu, “Densification induced dielectric properties change in amorphous BaTiO3 thin films,” J. Appl. Phys., vol. 71, pp. 5596-5600, 1992.
[116] A. Paskaleva, A. J. Bauer, M. Lemberger, and S. Zürcher, “Different current conduction mechanisms through thin high-k HfxTiySizO films due to the varying Hf to Ti ratio,” J. Appl. Phys., vol. 95, pp. 5583-5590, 2004.
[117] J. Pascual, J. Camassel, and M. Mathieu, “Fine structure in the intrinsic absorption edge of TiO2,” Phys. Rev. B, vol. 18, pp. 5606-5614, 1978.
[118] V. Mikhelashvili and G. Eistein, “Optical and electrical characterization of the electron beam gun evaporated TiO2 film,” Microelec. Reliab., vol. 41, pp. 1057-1061, 2001.
[119] S. Lee and J. W. Park, “Effect of fluorine on moisture absorption and dielectric properties of SiOF films,” Mater. Chem. Phys., vol. 53, pp. 150-154, 1998.
[120] P. P. Apte and K. C. Saraswat, “Correlation of Trap Generation to Charge-to-Breakdown (Qbd): A Physical-Damage Model of Dielectric Breakdown,” IEEE Trans. Electron Devices, vol. 41, pp. 1595-1602, 1994.
[121] D. J. DiMaria and J. W. Stasiak, “Trap creation in silicon dioxide produced by hot electrons,” J. Appl. Phys., vol. 65, pp. 2342-2356, 1989.
[122] D. J. DiMaria, D. Arnold, and E. Cartier, “Impact ionization and positive charge formation in silicon dioxide films on silicon,” Appl. Phys. Lett., vol. 60, pp. 2118-2120, 1992.
[123] H. Fukuda, S. Namioka, M. Miura, Y. Ishikawa, M. Yoshino, and S. Nomura, “Structural and Electrical Properties of Crystalline TiO2 Thin Films Formed by Metalorganic Decomposition,” Jpn. J. Appl. Phys. Part 1, vol. 38, pp. 6034-6038, 1999.
[124] M. Kadoshima, M. Hiratani, Y. Shimamoto, K. Torii, H. Miki, S. Kimura, and T. Nabatame, “Rutile-type TiO2 thin film for high-k gate insulator,” Thin Solid Films, vol. 424, pp. 224-228, 2003.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 13.59.88.212
論文開放下載的時間是 校外不公開

Your IP address is 13.59.88.212
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code