Responsive image
博碩士論文 etd-0721105-171457 詳細資訊
Title page for etd-0721105-171457
論文名稱
Title
摻鉻釔鋁石榴石晶體光纖放大器之研製
The Study and Fabrication of Cr4+:YAG Crystal Fiber Amplifier
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
92
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-06-29
繳交日期
Date of Submission
2005-07-21
關鍵字
Keywords
摻鉻釔鋁石榴石晶體光纖、熔燒、光放大器
optical amplifier, Cr4+:YAG Crystal Fiber, splicing
統計
Statistics
本論文已被瀏覽 5611 次,被下載 0
The thesis/dissertation has been browsed 5611 times, has been downloaded 0 times.
中文摘要
由於光通訊的快速成長與需求,傳輸資訊量每年皆以倍數成長,加上消除OH-離子光纖的技術突破,使得低損耗波段可傳輸的波長擴展為1.3 mm~1.6 mm。伴隨著光纖通訊的需求急速增加,亦發展出分波多工技術,但仍要有光放大器加以搭配,才能充分發揮這項新技術。Cr4+:YAG晶體,其自發輻射光譜涵蓋了1.3 mm ~1.6 mm的範圍,且其吸收頻譜在0.9 mm~1.2 mm波長範圍內,與目前摻鉺光纖放大器0.98 mm激發光源相容,故非常適合於晶體光纖放大器之應用。

本論文將LHPG方法生長的雙纖衣Cr4+:YAG晶體光纖以光纖熔燒機與通訊用之單模矽光纖熔燒接合,藉由改變熔燒參數以得到更小的插入損耗,目前訊號光(1470 nm~1640 nm)的插入損耗已由4 dB降到1 dB以下。此外,雙纖衣Cr4+:YAG晶體光纖纖心直徑的起伏,會造成光在傳播時有額外的損耗,導致增益下降,本論文將探討可接受的晶纖纖心直徑起伏大小,最後再對整個光學系統做模擬,讓我們往後在實驗前即可先預估結果,並可與實驗結果互相比較,進而找出實驗上要改善的地方。藉由數值模擬,可知-30 dBm的1380 nm訊號光在晶纖纖心直徑為5 mm,且晶纖長度為80 cm的條件下,以0.5 W的激發光源激發,可產生37.2 dB的增益。

未來我們將針對通訊用之單模矽光纖與雙纖衣Cr4+:YAG晶體光纖直徑匹配、熔燒處折射率漸近變化、較高的Cr4+摻雜濃度雙纖衣Cr4+:YAG晶纖等因素加以改善,以期能得到更高的增益。
Abstract
The maximum capacity of an optical fiber transmission system more than doubled every year to match the fast-growing communication need. The technology break through in dry fiber fabrication opens the possibility for fiber bandwidth all the way from 1.3 mm to 1.6 mm. The fast increasing demand of communication capacity results in the emergence of wavelength division multiplexing (WDM) technology, which results in the need for wideband optical amplifier. Cr4+:YAG has a strong spontaneous emission that covers 1.3 mm to 1.6 mm. Besides, its absorption spectrum is between 0.9 mm to 1.2 mm, which matches with the pumping source in current erbium doped optical amplifier. Such a fiber is, therefore, eminently suitable for optical amplifier applications.

We have successfully fused the double cladding Cr4+:YAG crystal fiber with single mode fiber by fusion splicer. The crystal fibers are grown by the laser-heated pedestal growth technique. The splicing parameters are optimized to achieve an insertion loss of below 1 dB. Since, the core diameter tapering will increase the propagation loss and reduce the gross gain. Adiabatically tapered fiber is discussed. Simulations are performed to predict the loss, and compare with the experimental results, then find out the way to improve the gross gain. Numerical simulation indicates that the gross gain could reach 37.2 dB at 0.5 W pump, if the core diameter of the double cladding Cr4+:YAG crystal fiber is reduced to 5 mm.

In the future, in order to increase gross gain we will improve the mode matching between the cores of single mode fiber and the double cladding Cr4+:YAG crystal fiber. Gradual change of the refractive index at the splicing region as well as high Cr4+ doping concentration can also improve the gross gain.
目次 Table of Contents
中文摘要
英文摘要
目錄
圖目錄
表目錄
第一章 緒論
第二章 雙纖衣Cr4+:YAG晶體光纖的特性
2.1 YAG的晶體結構與特性
2.2 Cr4+:YAG的能階模型與吸收及放射頻譜
2.3 雙纖衣Cr4+:YAG晶體光纖的生長方法
2.4雙纖衣Cr4+:YAG晶體光纖之晶體分析
2.5雙纖衣Cr4+:YAG晶體光纖中之傳輸
第三章 雙纖衣Cr4+:YAG晶體光纖放大器之研製
3.1 雙纖衣Cr4+:YAG晶體光纖端面之研磨拋光
3.2 雙纖衣Cr4+:YAG晶體光纖與單模光纖之熔燒
3.2.1熔燒方法
3.2.2 熔燒參數
3.2.3 雙纖衣Cr4+:YAG晶體光纖熔燒與包覆
第四章 雙纖衣Cr4+:YAG晶體光纖放大器之量測
4.1 雙纖衣Cr4+:YAG晶體光纖熔燒後之檢測
4.1.1傳播路徑檢測
4.1.2 插入損耗量測
4.2增益量測實驗架構與結果
第五章 理論分析與數值模擬
5.1理論模型
5.1.1 速率方程式
5.1.2 激發光源、訊號光源與ASE之光強度變化
5.1.3 ASE功率與訊號光功率的計算
5.2 數值模擬分析
第六章 結論
參考文獻
中英對照表
附錄
參考文獻 References
[1]山下真司,“圖解光纖通信原理與散新應用技術”,建興文化, 2003年。
[2]D. W. Hewak, “Progress towards a 1300 nm fiber amplifier,” New Developments in Optical Amplifiers (Ref. No. 1998/492), IEE Colloquium, vol. 26, pp. 12/1-12/5, 1998.
[3]S. Q. Man, H. W. Liu, Y. H. Wong, E. Y. B. Pun, and P. S. Chung, “Tellurite glasses for 1.3 mm optical amplifiers,” Lasers and Electro-Optics Society (LEOS) Annual Meeting, vol. 1, pp.196-197, 1998.
[4]S. Aozasa, H. Masuda, H. Ono, T. Sakamoto, T. Kanamori, Y. Ohishi, and M. Shimizu, “1480-1510 nm-band Tm doped fiber amplifier (TDFA) with a high power conversion efficiency of 42 %,” Optical Fiber Communication (OFC) Conference, vol. 4, pp. PD1, 2001.
[5]Y. Miyajima, T. Kamukai, and T. Sugawa, “1.31-1.36 mm optical amplification in Nd3+-doped fluorozirconate fiber,” Electron. Lett., vol. 26, pp. 194-195, 1990.
[6]G. P. Agrawal and N. K. Dutta, “Long-Wavelength Semiconductor lasers,” New York: Van Nostrand Reinhold, 1986, Ch. 3.
[7]A. Mecozzi and J. M. Wiesenfeld, “The roles of semiconductor optical networks,” Optics & Photonics News, pp. 37-42, March 2001.
[8]E. Desurvire, “Erbium-Doped Fiber Amplifiers: Principles and Applications,” New York: Wiley, 1994, Ch. 4.
[9]S. Shimada and H. Ishio, “Optical Amplifiers and their Applications,” New York: Wiley, 1994, Ch. 2.
[10]Y. Shi and O. Poulsen, “High-power broadband single mode Pr3+-doped fiber superfluorescence light source,” Electron. Lett., vol. 29, no. 22, pp. 1945-1946, 1993.
[11]N. Islam, “Raman amplifiers for telecommunications,” IEEE J. Quant. Electron., vol. 8, no. 3, pp. 548-559, May/June 2002.
[12]R. S. Feigelson, W. L. Kway, and R. K. Route, “Single crystal fibers by the laser-heated pedestal growth method,” Opt. Eng., vol. 24, pp. 1102-1107, 1985.
[13]J. S. Haggerty, “Production of fibers by a floating zone fiber drawing technique,” Final Report NASA-CR-120948, May 1972.
[14]C. A. Burrus and J. Stone, “Single-crystal fiber optical devices: A Nd:YAG fiber laser,” Appl. Phys. Lett., vol. 26, pp. 318-320, 1975.
[15]M. M. Fejer, G. A. Magel, and R. L. Byer, “High-speed high-resolution fiber diameter variation measurement system,” Appl. Opt., vol. 24, pp. 2362-2368, 1985.
[16]S. Sudo, A. Cordova-Plaza, R. L. Byer, and H. J. Shaw, “MgO:LiNbO3 single-crystal fiber with magnesium-ion In-diffused cladding,” Opt. Lett., vol. 12, pp. 938-940, 1987.
[17]S. Ishibashi, K. Naganuma, and I. Yokohama, “Cr,Ca:Y3Al5O12 laser crystal grown by the laser-heated pedestal growth method,” J. Crys. Growth, Vol. 183, pp. 614-621, 1998.
[18]S. Ishibashi and K. Naganuma, “Diode-pumped Cr4+:YAG single-crystal fiber laser,” OSA Trends in Optics and Photonics, 34, Advanced Solid-State Lasers, H. Injeyan, U. Keller, and C. Marshall, eds. (Optical Society of America, Washington, DC), pp. 426-430, 2000.
[19]M. A. Gulgun, W. Y. Ching, Y. N. Xu, and M. Ruhle, “Electron states of YAG probed by energy-loss near-edge spectrometry and ab initio calculations, ” Phil. Mag. B, vol. 79, p. 921, 1999.
[20]A. Sennaroglu, “Analysis and optimization of lifetime thermal loading in continuous-wave Cr4+-doped solid-state lasers,” J. Opt. Soc. Am., vol. 18, no. 11, pp. 1578-1586, 2001.
[21]H. Eilers, W. M. Dennis, W. M. Yen, S. Kuck, K. Peterman, G. Huber, and W. Jia, “Performance of a Cr:YAG laser, ”IEEE J. of Quantum Electron., vol. 29, p. 2508, 1993.
[22]S. Kuck, K. Petermann, and G. Huber, “Spectroscopic investigation of the Cr4+-center in YAG,” OSA Proceedings on Advanced Solid-State Lasers, vol. 10, pp. 92-94, 1991.
[23]G. A. Magel, M. M. Fejer, and R. L. Byer, “Quasi-phase-matched second harmonic generation of blue light in periodically poled LiNbO3,” Appl. Phys. Lett., vol. 56, pp. 108-110, 1990.
[24]L. Hesseling and S. Redfield, “Photorefractive holographic recording in strontium barium niobate fiber,” Opt. Lett., vol. 13, pp. 877-879, 1988.
[25]R. S. Feigelson, D. Gazit, and D. K. Fork, “Superconducting Bi-Ca-Sr-Cu-O fibers grown by the laser-heated pedestal growth method,” Science, vol. 240, pp. 1642-1645, 1988.
[26]張金倉,霍玉晶,何豫生,“激光加熱浮區生長強織構高溫超導晶纖的研究”,中國激光,第20卷,第8期,1993年。
[27]G. Keiser, “Optical Fiber communications, ” 3rd ed, McGraw-Hill, 2000, Ch. 2, Ch. 3.
[28]J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices Part1: Adiabaticity criteria, ” IEE Proc., vol. 138, pp. 343-354, 1991.
[29]W. Zheng, O. Hulten, and M. Bengtsson, “Lens-effect tracing technique aligns and splices polarization-maintaining fiber,” IEEE J. Lightwave Tech., pp. 48-53, Nov. 1988.
[30]W. Zheng, O. Hulten, and R. Rylander, “Erbium-doped fiber splicing and splice loss estimation,” IEEE J. of Lightwave Tech., vol. 12, no. 3, pp. 430-435, March 1994.
[31]H. Y. Tam, “Simple fusion splicing technique for reducing splicing loss between standard single mode fibers and erbium-doped fiber, ” Electron Lett., vol. 27, pp. 1597-1599, Aug. 1991.
[32]P. C. Becker, N. A. Olsson, and J. R. Simpson, “Erbium-Doped Fiber Amplifiers: Fundamentals and Technology, ” 1st ed, Academic Press, pp. 147-148, 1999.
[33]N. I. Borodin, V. A. Zhitnyuk, A. G. Okhrimchuk, and A. V. Shestakov, “Oscillation of a Y3Al5O12 : Cr4+ laser in wavelength region of 1.34-1.6 mm, ” Bull. Acad. Sci. USSR, Phys. Ser., vol. 54, pp. 54-60, 1990.
[34]I. J. Miller, A. J. Alcock, and J. E. Bernard, “Experimental Investigation of Cr4+ in YAG as a passive Q-switch, ” in OSA Proc. Adv. Solid-state Lasers, vol. 13, pp. 322-325, 1992.
[35]H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064mm absorption in Cr,Ca:Y3Al5O12 crystals, ” Appl. Phys. Lett., vol. 61, pp. 2958-2960, 1992.
[36]K. Spariosu, W. Chen, R. Stultz, M. Birnbaum, and A. V. Shestakov “Dual Q switching and laser action at 1.06 and 1.44 mm in a Nd3+:YAG-Cr4+:YAG oscillator at 300 K, ” Opt. Lett. vol. 18, pp. 814-816, 1993.
[37]E. Eilers, U. Hommerich, S. M. Jacobsen, W. M. Yen, “Spectroscopy and dynamics of Cr4+:Y3Al5O12, ” Phys. Rev. B, vol. 49, no. 22, pp. 15505-15513, 1994.
[38]Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser, ” IEEE J. Quantium Electron., vol. 31, no. 10, pp. 1738-1741, 1995.
[39]S. Kuck, K. Petermann, U. Pholmann, and G. Huber, “Near-infrared emission of Cr4+-doped garnets : Lifetimes, quantum efficiencies, and emission cross sections, ” Phys. Rev. B, vol. 51, no. 24, pp. 17323-17331, 1995.
[40]S. C. Lopez, R. P. M. Green, G. J. Crofts, and M. J. Damzen, “Intensity-induced birefringence in Cr4+:YAG, ” J. Mod. Opt., vol. 44, pp. 209-219, 1997.
[41]A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, and K. Midorikawa, “Absorption and oscillation characteristics of a pulsed Cr4+:YAG laser investigated by a doubled-pulse pumping technique, ” IEEE. J. Quantum Electron., vol. 35, no. 10, pp. 1548-1553, 1999.
[42]J. C. Diettrich, I. T. McKinnie, and D. M. Warringtion, “The influence of active ion concentration and crystal parameters on pulsed Cr:YAG laser performance, ” Opt. Commun. vol. 167, pp. 133-140, 1999.
[43]R. Feldman, Y. Shimony, and Z. Burshtein, “Dynamics of chromium ion valence transformations in Cr,Ca:YAG crystals used as laser gain and passive Q-switching media, ” Optical Materi., vol. 24, pp. 333-344, 2003.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.188.175.182
論文開放下載的時間是 校外不公開

Your IP address is 18.188.175.182
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code