Responsive image
博碩士論文 etd-0721105-220926 詳細資訊
Title page for etd-0721105-220926
論文名稱
Title
固態微型諧振器之壓電層與反射層研製
Fabrication of Piezoelectric and Reflecting Layers for Solidly Mounted Resonator (SMR)
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
113
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-05-24
繳交日期
Date of Submission
2005-07-21
關鍵字
Keywords
體聲波元件、氮化鋁
SMR, BAW, bulk acoustic wave, solidly mounted resonator, AlN
統計
Statistics
本論文已被瀏覽 5680 次,被下載 1899
The thesis/dissertation has been browsed 5680 times, has been downloaded 1899 times.
中文摘要
本論文的研究目標為固態微型諧振器之元件製作及其特性分析;首先使用射頻磁控濺鍍系統法沈積氮化鋁壓電薄膜,並探討氮化鋁薄膜成長在不同底電極,如鉬、鋁和白金上的特性;接著利用雙靶直流濺鍍系統搭配可旋式基板,交替沈積高低聲阻抗的反射層結構。
在反射層結構的研究中發現,氮化鋁/鋁型式的多層薄膜介面平整度較差,因此改用鈦/鉬型式組成的反射層。另外,並嘗試藉由製程參數調變以及熱處理來探討其諧振特性。
由頻率響應分析得知,調整製程參數,藉以改善反射層之粗糙度,其表面和剖面的型態都獲得明顯的改善,以此反射層製作固態微型諧振器,其諧振特性有明顯之進步,並且隨著反射層層數的增加,諧振效應更佳。
而經過熱處理製程後的元件,其諧振響應獲得些微的改善;但是由於反射層經退火後,表面粗糙有增加的趨勢,使得聲波能量在反射層界面產生散射效應(Scattering Effect),因此頻率響應改善幅度有限。
Abstract
In this study, AlN films are deposited using reactive RF magnetron sputter on various bottom metals, such as Mo, Al and Pt. The orientation of piezoelectric AlN thin films on different bottom electrode materials are investigated. Moreover, the acoustic Bragg reflectors deposited by DC magnetron sputter are composed of alternating layers of high and low acoustic impedance materials. To improve the performance of the reflectors, rapid thermal anneal and deposition process control over roughness of the thin film are also investigated.
The resonance characteristics are improved obviously by deposition process control over thin films. The roughness control is the key factor of good frequency responses of SMR. In addition, the more layer of the reflectors the better the frequency response we obtained.
The frequency responses of SMR are slightly improved by rapid thermal annealing procsess. Although defects in the thin films would be eliminated, nevertheless the thin film roughness became worse after annealing. This phenomenon would limit the improvement of frequency responses.
目次 Table of Contents
目錄
摘要….. I
目錄….. III
圖表目錄 VI
第一章 前言 1
第二章 理論分析 5
2.1 壓電理論 5
2.2.1 壓電效應 6
2.2 SMR的理論 7
2.2.1 SMR的特點 7
2.2.2 SMR的基本設計 8
2.3 反應性射頻磁控濺鍍原理 10
2.3.1 輝光放電 10
2.3.2 磁控濺射 11
2.3.3 射頻濺射 12
2.3.4 反應性濺射 12
2.4 AlN結構與特性 13
2.5 SMR的參數性質 14
2.5.1 Kt2,eff測量 14
2.5.2 Q測量 15
第三章 實驗 16
3.1 基板的清洗 16
3.2 射頻濺鍍系統與薄膜沈積 17
3.3 直流濺鍍系統與薄膜沈積 18
3.4 黃光微影製程 19
3.5 X光繞射(X-Ray Diffraction, XRD)分析 20
3.6 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM)分析 20
3.7 原子力測量顯微鏡(Atomic Force Microscopy, AFM)分析 21
3.8 快速熱處理(Rapid Thermal Processing, RTP) 21
3.9 SMR的製作 22
3.9.1 反射層的製作 22
3.9.2 壓電層的製作 24
3.10 本研究所採用之元件參數 25
3.11 元件測量 25
第四章 結果與討論 26
4.1 壓電層的探討 26
4.2 反射層的探討 27
4.2.1 掃描式電子顯微鏡 (Scanning Electron Microscopy, SEM)分析 27
4.2.2 原子力顯微鏡(Atomic Force Microscopy, AFM)分析 29
4.3 頻率響應分析 31
第五章 結論 33
參考文獻 35

圖表目錄
圖1-1 SMR元件的(a)側視面,(b)上視圖 40
圖1-2 體聲波元件的類型 41
圖2-1 壓電效應 42
圖2-2 波長為λ/2型態的SMR 43
圖2-3 負載阻抗對層數的關係圖. 44
圖2-4 波長為λ/4型態的SMR 45
圖2-5 直流輝光放電結構與電位分佈圖 46
圖2-6 平面型圓形磁控之結構圖 47
圖2-7 平面磁控放電之剖面圖 47
圖2-8 反應性濺射之模型 48
圖2-9 AlN的晶體構造 49
圖3-1 射頻磁控濺鍍系統 50
圖3-2 直流磁控濺鍍系統 51
圖3-3 射頻磁控濺鍍系統操作之流程圖 52
圖3-4 舉離法 53
圖3-5 SMR製作流程圖 54
圖3-6 SMR元件實圖 55
圖4-1 氮化鋁成長在矽基板之(a)表面,與(b)剖面之SEM圖 56
圖4-2 氮化鋁分別成長在(a)鉬底電極,(b)白金底電極,及(c)鋁底電極之表面SEM圖 57
圖4-3 氮化鋁分別成長在(a)鉬底電極,(b)白金底電極,及(c)鋁底電極之剖面SEM圖 58
圖4-4 氮化鋁分別成長在鉬底電極、白金底電極和鋁底電極之XRD圖 59
圖4-5 以AlN/Al為反射層之剖面SEM圖 60
圖4-6 (a)兩對,(b)三對Ti/Mo反射層之表面SEM圖 61
圖4-7 (a)四對,(b)五對Ti/Mo反射層之表面SEM圖 62
圖4-8 (a)兩對,(b)三對Ti/Mo反射層之剖面SEM圖 63
圖4-9 (a)四對,(b)五對Ti/Mo反射層之表面SEM圖 64
圖4-10 不同Ti/Mo反射層層數經真空RTA400℃退火後的表面SEM圖 65
圖4-11 不同Ti/Mo反射層層數經真空RTA500℃退火後的表面SEM圖 66
圖4-12 兩對Ti/Mo反射層退火前後表面型態比較圖 67
圖4-13 三對Ti/Mo反射層退火前後表面型態比較圖 68
圖4-14 四對Ti/Mo反射層退火前後表面型態比較圖 69
圖4-15 五對Ti/Mo反射層退火前後表面型態比較圖 70
圖4-16 不同Ti/Mo反射層層數經真空RTA400℃退火後的剖面SEM圖 71
圖4-17 不同Ti/Mo反射層層數經真空RTA500℃退火後的剖面SEM圖 72
圖4-18 兩對Ti/Mo反射層退火前後剖面型態比較圖 73
圖4-19 三對Ti/Mo反射層退火前後剖面型態比較圖 74
圖4-20 四對Ti/Mo反射層退火前後剖面型態比較圖 75
圖4-21 五對Ti/Mo反射層退火前後剖面型態比較圖 76
圖4-22 改善粗糙度後,(a)兩對,及(b)三對Ti/Mo反射層之表面SEM圖 77
圖4-23 改善粗糙度後,(a)四對,及(b)五對Ti/Mo反射層之表面SEM圖 78
圖4-24 改善粗糙度後,(a)兩對,及(b)三對Ti/Mo反射層之剖面SEM圖 79
圖4-25 改善粗糙度後,(a)四對,及(b)五對Ti/Mo反射層之剖面SEM圖 80
圖4-26 不同沈積壓力下,Ti之AFM圖(固定參數為:200W, 200oC, 3min, 10sccm) 81
圖4-27 不同沈積溫度下,Ti之AFM圖(固定參數為:200W, 5mtorr, 3min, 10sccm) 82
圖4-28 不同沈積功率下,Ti之AFM圖(固定參數為:400oC, 5mtorr, 3min, 10sccm) 83
圖4-29 不同沈積壓力下,Mo之AFM圖(固定參數為:150W, 300oC, 3min, 10sccm) 84
圖4-30 不同沈積溫度下,Mo之AFM圖(固定參數為:150W, 5mtorr, 3min, 10sccm) 85
圖4-31 不同沈積功率下,Mo之AFM圖(固定參數為:400oC, 5mtorr, 3min, 10sccm) 86
圖4-32 Ti的表面粗糙度對沈積壓力之關係圖 87
圖4-33 Ti的表面粗糙度對沈積溫度之關係圖 87
圖4-34 Ti的表面粗糙度對濺鍍功率之關係圖 88
圖4-35 Mo的表面粗糙度對沈積壓力之關係圖 88
圖4-36 Mo的表面粗糙度對沈積溫度之關係圖 89
圖4-37 Mo的表面粗糙度對濺鍍功率之關係圖 89
圖4-38 兩對Ti/Mo反射層之SMR諧振響應 90
圖4-39 三對Ti/Mo反射層之SMR諧振響應 90
圖4-40 四對Ti/Mo反射層之SMR諧振響應 91
圖4-41 五對Ti/Mo反射層之SMR諧振響應 91
圖4-42 兩對Ti/Mo反射層經RTA400℃退火後之SMR諧振響應 92
圖4-43 三對Ti/Mo反射層經RTA400℃退火後之SMR諧振響應 92
圖4-44 四對Ti/Mo反射層經RTA400℃退火後之SMR諧振響應 93
圖4-45 五對Ti/Mo反射層經RTA400℃退火後之SMR諧振響應 93
圖4-46 不同對數Ti/Mo反射層經RTA500℃退火後之SMR諧振響應 94
圖4-47 兩對Ti/Mo反射層經改善粗糙度後之SMR諧振響應 95
圖4-48 三對Ti/Mo反射層經改善粗糙度後之SMR諧振響應 95
圖4-49 四對Ti/Mo反射層經改善粗糙度後之SMR諧振響應 96
圖4-50 五對Ti/Mo反射層經改善粗糙度後之SMR諧振響應 96
表一 常用的壓電材料 97
表二 AlN材料的一些基本特性 97
表三 反應性射頻濺鍍系統沈積氮化鋁薄膜之系統參數 98
表四 直流濺鍍系統沈積鉬和鈦薄膜之系統參數 98
表五 JCPDS datas of AlN powder 99
表六 材料聲波特性參數 100
表七 Mo和Ti之XRD最佳參數 100
表八 材料基本特性參數 101
表九 Mo和Ti表面粗糙度最小之濺鍍參數 101
參考文獻 References
[1] S. H. Lee, K. H. Yoon and J. K. Lee, “Influence of Electrode Configurations on the Quality Factor and Piezoelectric Coupling Constant of Solidly Mounted Bulk Acoustic Wave Resonators”, J. Appl. Phys., vol. 92, pp. 4062-4069, 2002.
[2] K.M. Lakin, J.R. Belsick, J.P. McDonald, K.T. McCarron, and C.W. Andrus, “Bulk Acoustic Wave Resonators And Filters for 2GHz”, MTT-S 2002 Paper TH1D-6 Expanded.
[3] K. W. Tay, C. L. Huang, L. Wu and M. S. Lin, “Performance Characterization of Thin AlN Films Deposited on Mo Electrode for Thin-Film Bulk Acoustic Wave Resonators”, Jpn. J. Appl. Phys., vol. 43, pp. 5510-5515, 2004.
[4] P.B. Kirby, M.D.G. Potter, C.P. Williams and M.Y. Lim, “Thin Film Piezoelectric Property Considerations for Surface Acoustic Wave and Thin Film Bulk Acoustic Resonators”, Journal of the European Ceramic Society, vol. 23, pp. 2689-2692, 2003.
[5] C. L. Huang, K. W. Tay and L. Wu, “Fabrication and Performance Analysis of Film Bulk Acoustic Wave Resonators”, Materials Letters, vol. 59, pp. 1012-1016, 2005.
[6] R. Jakkaraju , G. Henn , C. Shearer , M. Harris , N. Rimmer and P. Rich, “Integrated Approach to Electrode and AlN Depositions for Bulk Acoustic Wave (BAW) Devices”, Microelectronic Engineering, vol. 70, pp. 566-570, 2003.
[7] S. H. Lee and J. K. Lee, “Growth of Highly c-axis Textured AlN Films on Mo Electrodes for Film Bulk Acoustic Wave Resonators” , J. Vac. Sci. Technol. A 21, pp. 1-5, Jan/Feb 2003.
[8] M. Hara and M. Esashi, “RF MEMS and MEMS Packaging”.
[9] H. H. Kim, B. K. Ju, Y. H. Lee, S. H. Lee, J. K. Lee and S. W. Kim, “A Noble Suspended Type Thin Film Resonator (STFR) Using the SOI Technology”, Sensors and Actuators A, vol. 89, pp. 255-258, 2001.
[10] T. Mattil, A. Oja, H. Seppa, O. Jaakkola, J. Kiihamaki, H. Kattelus, M. Koskenvuori, P. Rantakari, and I. Tittonen, “Micromechanical Bulk Acoustic Wave Resonator”, 2002 IEEE Ultrasonic Symposium, pp. 945-948.
[11] R. Lanz, P. Carazzetti and P. Muralt, “Surface Micromachined BAW Resonators Based on AlN”, 2002 IEEE Ultrasonic Symposium, pp. 981-983.
[12] W. E. Newell, “Face-Mounted Piezoelectric Resonators”, in Proc. IEEE, vol. 53, pp. 575-581, 1965.
[13] K. M. Lakin, “Development of Miniature Filters for Wireless Applications,” IEEE Trans. On Microwave Theory and Techniques, vol. 43, pp. 2933-2939, 1995.
[14] S. H. Kim and J. H. Kim, “Bragg Reflector Thin Film Resonator Using Aluminium Nitride Deposition by RF Sputtering”.
[15] M. A. Dubois, “Thin Film Bulk Acoustic Wave Resonators: a technology-overview”, MEMSWAVE 03, France, 2003.
[16] K. M. Lakin, K. T. McCarron, and R. E. Rose, “Solidly Mounted Resonators and Filters”, 1995 IEEE Ultrasonic Symposium, pp. 905-908.
[17] S. Pinkett, W. Hunt, B. Barber and P. Gammel, “Broadband Characterization of ZnO-Based Solidly Mounted Resonators”, 2002 IEEE International Freq. Con. Symp., pp. 15-19.
[18] H. Kobayashi, Y. Ishida, K. Ishikawa, A. Doi and K. Nakamura, “Fabrication of Piezoelectric Thin Film Resonators with Acoustic Quarter-Wave Multilayers”, Jpn. J. Appl. Phys., vol. 41, pp. 3455–3457, 2002.
[19] K. Nakamura and H. Kanbara, “Theoretical Analysis of A Piezoelectric Thin Film Resonator With Acoustic Quarter-Wave Multilayers”, 1998 IEEE International Freq. Con. Symp., pp. 876-881.
[20] H. Kanbara, H. Kobayashi and K. Nakamura, “Analysis of Piezoelectric Thin Film Resonators with Acoustic Quarter-Wave Multilayers”, Jpn. J. Appl. Phys., vol. 39, pp. 3049-3053, 2000.
[21] D. H. Kim, M. Yim, D. Hai, J. S. Park and G. Yoon, “Improved Resonance Characteristics by Thermal Annealing of W/SiO2 Multi-Layers in Film Bulk Acoustic Wave Resonator Devices”, Jpn. J. Appl. Phys., vol. 43, pp. 1545-1550, 2004.
[22] S. H. Park, B. C. Seo, H. D. Park and G. Yoon, “Film Bulk Acoustic Resonator Fabrication for Radio Frequency Filter Applications”, Jpn. J. Appl. Phys., vol. 39, pp. 4115-4119, 2000.
[23] R. S. Naik, J. J. Lutsky and R. Reif, “Measurements of the Bulk, C-Axis Electromechanical Coupling Constant as a Function of A1N Film Quality”, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 47, pp. 292-296, 2000.
[24] K. M. Lakin, “Thin Film Resonator Technology”, IEEE international frequency control symposium, pp. 765-778.
[25] K. M. Lakin, “Thin Film Resonator and Filters”, IEEE international frequency control symposium, pp. 895-906.
[26] R. Lanz, M. A. Dubois and P. Muralt, “Solidly Mounted BAW Filters for the 6 to 8 GHz Range Based on AlN Thin Films”, 2001 IEEE ultrasonics symposium, pp. 843-846.
[27] H. P. Loebl, C. Metzmacher, D. N. Peligrad, R. Mauczok, M. Klee, W. Brand, R. F. Milsom, P. Lok, F.van Straten, A. Tuinhout and J. W. LobeekC, “Solidly Mounted Bulk Acoustic Wave Filters for The GHZ Frequency Range”, 2002 IEEE Ultrasonic Symposium, pp. 919-923.
[28] S. H. Kim, J. H. Kim, H. D. Park and G. Yoon, “AlN-Based Film Bulk Acoustic Resonator Devices with W/SiO2 Multilayers Reflector for RF Bandpass Filter Application”, J. Vac. Sci. Technol. B, vol. 19, pp. 1164-1169, 2001.
[29] S. H. Lee, J. H. Kim, G. K. Mansfeld, K. H. Yoon, and J. K. Lee, “Influence of Electrodes and Bragg Reflector on the Quality of Thin Film Bulk Acoustic Wave Resonators”, 2002 IEEE International Fre. Con. Symp., pp.45-49.
[30] M. A. Dubois, P. Muralt and H. Matsumoto, V. Plessky, “Solidly Mounted Resonator Based on Aluminum Nitride Thin Film”, 1998 IEEE ultrasonics symposium, pp. 909-912.
[31] S. H. Lee, J. K. Lee and K. H. Yoon, “Growth of Highly c-axis Textured AlN Films on Mo Electrodes for Film Bulk Acoustic Wave Resonators”, J. Vac. Sci. Technol. A 21, pp. 1-5, Jan/Feb 2003.
[32] M. A. Dubois and P. Muralt, “Stress and Piezoelectric Properties of Aluminum Nitride Thin Films Deposited onto Metal Electrodes by Pulsed Direct Current Reactive Sputtering”, J. of App. Phys., vol. 89, pp. 6389-6395, 2001.
[33] M. Akiyama, K. Nagao, N. Ueno, H. Tateyama and T. Yamad, “Influence of Metal Electrodes on Crystal Orientation of Aluminum Nitride Thin Films”, Vacuum, vol. 74, pp. 699-703, 2004.
[34] 吳朗,“電子陶瓷:壓電陶瓷”,全欣資訊,(1994)7.
[35] 施敏著,張俊彥譯,”半導體元件之物理與技術”,儒林,(1990)425.
[36] R. W. Berry, P. M. Hall and M. T. Harris, “Thin Film Technology”, van Nostrand Reinhold, 1980, 201.
[37] J. L. Vossen and W. Kern, “Thin Film Process”, Academic Press, 1991, 134.
[38] E. Janczak-Bienk, H. Jensen and G. Sorensen, “The Influence of the Reactive Gas Flow on the Properties of AlN Sputter-Deposited Films”, Mater. Sci. and Eng. A, vol. 140, pp.696-701, 1991.
[39] 王宏灼,”反應性射頻濺鍍法成長氮化鋁薄膜之研究”,國立中山大學電機工程研究所碩士論文,(1995)。
[40] 蔡家龍,”製程參數對濺射沈積氮化鋁薄膜之影響”,國立中山大學電機工程研究所碩士論文,(2000)。
[41] 歐天凡,”沈積條件對氮化鋁薄膜壓電係數及機電耦合係數之影響”,國立中山大學電機工程研究所碩士論文,(2004)。
[42] 廖秋風,“氮化物粉體”,材料與社會,40(1990)59-67.
[43] D. C. Bertolet, H. Liu and J. W. Rogers, J. Appl. Phys., vol. 75, pp. 5385-5390, 1994.
[44] S. Yoshida, S. Misawa, Y. Fujii, S. Takada, H. Hayakawa, S. Gonda and A. Itoh, J. Vac. Sci. & Technol., vol. 16, 1979.
[45]
顏豐明,“高熱傳導率氮化鋁基板材料之簡介”,材料與社會,73(1993)45-46.
[46] V. M. Ristic, ”Principles of Acoustic Devices”, 新智,(1984) 3.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code