Responsive image
博碩士論文 etd-0721107-123645 詳細資訊
Title page for etd-0721107-123645
論文名稱
Title
微型質子交換膜燃料電池之微流道壁裂縫尖端三維應力場之數值分析
3-Dimensional Numerical Stress Analysis around a Micro-Channel Wall Crack Tip in a Micro-PEMFC
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
86
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-06-22
繳交日期
Date of Submission
2007-07-21
關鍵字
Keywords
燃料電池、應力強度因子、微流道、三維
Fuel cell, Stress Intensity Factor, 3-D, Micro channel
統計
Statistics
本論文已被瀏覽 5679 次,被下載 1563
The thesis/dissertation has been browsed 5679 times, has been downloaded 1563 times.
中文摘要
本文主要的目的是針對微型質子交換模燃料電池的微流道板建立三維模型,利用數值模擬方式探討流道板於實際運作上的可靠度分析。存在於流道板上的裂縫會受到由入口進入的燃料H2所產生剪應力作用而增長,使得用來收集電子的銀金屬剝落,降低燃料電池的效率。利用套裝軟體ANSYS建立模型並施加氣體產生的剪應力為負載,模擬出裂縫尖端的應力場,藉由應力場找出三種破壞模式的應力強度因子KΙ、KΙΙ與KΙΙΙ來描述裂縫的行為。最後利用田口法和變異數分析,改變氣體入口壓力、裂縫幾何形狀和流到尺寸,找出影響裂縫行為最大的因素。模擬分析結果顯示KΙ與KΙΙ受裂縫幾何形狀的影響較大,而KΙΙΙ則是受到裂縫幾何形狀和流道尺寸的影響較大。
Abstract
The main aim of this study is to develop three dimensional models for micro flow-field plate of PEMFC and use numerical simulations to discuss the reliability of micro flow-field plate which works in real. A crack exists in the plate is loaded by the shear force, which is produced by the fuel H2 enter from inlet, and will propagate. The Ag, which is used to collect the electrons, will peel off and the efficiency of fuel cell will decrease. The commercial package software ANSYS was used to simulate the stress state around crack tip. Three modes of stress intensity factors KΙ, KΙΙ and KΙΙΙ, were calculated in order to describe the stressed behavior of crack. Finally, the inlet pressure, geometry of crack and channel size is changed and Taguchi method with ANOVA is used to find the factors which influence the stressed behavior of crack most. The simulation results show that KΙ and KΙΙ are influenced most by geometry of crack and KΙΙΙ is influenced more by geometry of crack and channel size
目次 Table of Contents
Chapter 1 Introduction 1
1.1 Background of Fuel Cell 1
1.2 Basic Theory of Fuel Cell 2
1.3 Research Objectives 4
1.4 Literatures Review 5
1.4.1 Analysis in Fuel Cell 5
1.4.2 Flow Field in the Micro-Channel 6
1.4.3 Analysis of Cracks 7
1.4.4 Simulation of Cracks in Dissimilar Materials 8
1.5 Structure of the Thesis 10
Chapter 2 Basic Theory 15
2.1 Analysis of Crack in Biomaterial Using Finite Element 15
2.1.1 Finite Element Method 16
2.1.2 Interfacial Cracks in Bimaterial Systems 17
2.1.3 Simulation of Cracks 19
2.1.4 Singular Element—Quarter Point Element 20
2.2 Taguchi Method 22
2.3 Analysis of Variance 24
2.4 Analysis Procedure 26
Chapter 3 ANSYS Model 33
3.1 The Model Use 33
3.2 The Convergence of Mesh Procedure 34
3.3 Accuracy of Model 34
Chapter 4 Results and Discussions 42
4.1 SIF in different Property Proportions and Geometries 42
4.2 Taguchi Method and ANOVA 44
Chapter 5 Conclusions and Future Prospect 68
5.1 Conclusions 68
5.2 Future Prospect 69
References 70
參考文獻 References
1.http://biodiesel.environmentalactiongroup.org/hydrogen.html
2.J. S. Kuo. Design and microfabrications for micro PEMFCs. Master Thesis, Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, 2004
3.D. Singh, D. M. Lu. A two-dimensional analysis of mass transport in proton exchange membrane fuel cells. Journal of Engineering Science, 37, 431-452, 1999
4.H. Dohle, A. A. Kornyshev, A. A. Kulikovsky, J. Megel, D. Stolten. The current voltage plot of PEM fuel cell with long feed channels. Electrochemistry Communications, 3, 73-80, 2001
5.W. Y. Sim, G. Y. Kim, S. S. Yang. Fabrication of micro power source (MPS) using a micro direct methanol fuel cell (μDMFC) for the medical application. 14th IEEE International Conference on Micro Electro Mechanical Systems, Interlaken, Switzerland, 341-344, 2001
6.A. A. Kornyshev, A.A. Kulikovsky. Characteristic length of fuel and oxygen consumption in feed channels of polymer electrolyte fuel cells. Electrochimica Acta, 46, 4389-4395, 2001
7.A. Kumar, R. G. Reddy. Effect of channel dimensions and shape in the flow-field distributor on the performance of polymer electrolyte membrane fuel cells. Journal of Power Source, 113, 11-18, 2003
8.X. F. Peng, G. P. Peterson. The effect of thermofluid and geometrical parameters on convection of liquids through rectangular microchannels. International Journal Heat and Mass Transfer, 38, 755-758, 1995
9.T. V. Nguyen. A gas distributor design for proton-exchange-membrane fuel cell. Journal of the Electrochemistry Society, 143, 103-105, 1996
10. Z. Y. Guo, Z. X. Li. Size effect on microscale single-phase flow and heat transfer. Journal of Heat and Mass Transfer, 46, 1681-1683, 2002
11. J. C. Newman Jr, M. A. James, U. Zerbst. A review of the CTOA/CTOD fracture criterion. Engineering Fracture Mechanics, 70, 371-385, 2003
12. K. Aslantas, S. Tasgetiren. Modeling of spall formation in a plate made of austempered ductile iron having a subsurface-edge crack. Computational Materials Science, 29, 29-36, 2004
13. S. S. Cho, K. Komvopoulos. Finite element analysis of subsurface crack propagation in a half-space due to a moving asperity contact. Wear, 209, 57-68, 1997
14. K. Komvopoulos. Subsurface crack mechanisms under indention loading. Wear, 199, 9-23, 1996
15. J. W. Hutchinson, Z. Suo. Mixed mode cracking in layered materials. Advances in Applied Mechanics, 29, 64-191, 1991
16. T. Ikeda, N. Miyazaki, T. Soda. Mixed mode fracture criterion of interface crack between dissimilar materials. Engineering Fracture Mechanics, 59, 725-735, 1998
17. J. Toribio, V. Kharin. Comments on simulations of fatigue crack propagation by blunting and re-sharpening:The mesh sensitive. International Journal of Fracture, 140, 285-292, 2006
18. A. R. Shahani. Some problems in the antiplane shear deformation if bi-material wedge. International Journal of Solids and Structures, 42, 3093-3113, 2005
19. A. R. Shahani. Mode ΙΙΙ stress intensity factors in an interfacial crack in dissimilar bonded materials. Archive of Applied Mechanics, 75, 405-411, 2006
20. C. H Chien, Y. S. Shih, S. S. Hsieh, H. H. Tsai, C. W. Lin, Y. L. Huang, C. H. Yeh. Reliability analysis of the cracked Ag-SU8 interface on the channel wall in a micro-PEMFC. 4th International Conference on Fuel Cell Science, Engineering and Technology, Irvine, CA, 2006
21. C. H Chien, Y. S. Shih, S. S. Hsieh, H. H. Tsai, C. W. Lin, Y. L. Huang, The Taguchi analysis of the cracked Ag-SU8 interface on the channel wall in a micro-PEMFC. 1st National Conference on Hydrogen Energy and Fuel Cell, Sun-Moon Lake, Nantou, 228-235, 2006
22. Y.S. Shih. Reliability analysis of the cracked Ag-SU8 interface on the channel wall in a micro-PEMFC. Master Thesis, Department of Mechanical and Electro-Mechanical Engineering. National Sun Yat-sen University, 2005
23. R. D. Cook, D. S. Malkus, M. E. Plesha. Concepts and applications of finite element analysis, 3rd Ed. John Wiley and Sons, Inc.: New York, 1989
24. J. R. Rice, Z. Suo, J. S. Wang. Mechanics and thermodynamics of brittle interfacial failure in biomaterial system. A. G. Ashby, M. Ruhle, M. F. Evans, J. P. Hirth, editors. Metal-Ceramics Interfaces, Pergamon Press: New York, 259-294, 1990
25. C. Bjerken, C. Persson. A numerical method for caculating stress intensity factors for interface cracks in bimaterials. Engineering Fracture Mechanics, 68, 235-246, 2001
26. D. C. Montgomery. Design and analysis of experiments. John Wiley and Sons, Inc.: New York, 1991
27. G. Li, P. L. Sullivan, R. W. Thring. Nonlinear finite element analysis of stress and strain distributions across the adhesive thickness in composite single-lap joints. Composite Structures, 46, 395-403, 1991
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code