Responsive image
博碩士論文 etd-0721108-152406 詳細資訊
Title page for etd-0721108-152406
論文名稱
Title
薄膜濺鍍製程中殘留應力分佈與影響
A Study on the Residual Stress Distributions during Thin Films Sputtering Process
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
101
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-06-30
繳交日期
Date of Submission
2008-07-21
關鍵字
Keywords
薄膜、殘留應力、晶圓、UBM
thin film, wafer, UBM, residual stress
統計
Statistics
本論文已被瀏覽 5833 次,被下載 25
The thesis/dissertation has been browsed 5833 times, has been downloaded 25 times.
中文摘要
本研究主要在探討金屬薄膜濺鍍製程中,因熱變化所造成的殘留應力分佈與影響,對利用Marc有限元素套裝軟體模擬分析濺鍍製程中熱-應力(Thermal-Mechanical)耦合效應。文中分析模型分為兩部份:一維軸對稱晶圓模型,分別模擬4吋、六吋、八吋於晶圓於UBM製程中,所產生的殘留應力分佈與影響。另一則為三維有限元素模型,以探討微小晶片上鍍膜厚度、鍍膜溫度對鍍層殘留應力分佈之影響,並研究蝕刻製程對薄膜殘留應力影響。
模擬結果顯示,各層薄膜存在著不同大小的殘留應力,在晶圓上薄膜的最大主應力隨著距圓心距離增加而減少,且離晶圓圓心愈遠基板翹曲會愈大,此外薄膜厚度與基板厚度都會影響翹曲的程度。
Abstract
In this thesis, the residual stress distribution of metal film sputtered on silicon substrate are studied. The commercial Marc finite element method package is used in this work. The thermal-mechanical model is employed in the residual and thermal stress analysis of thin film during the sputtering process.
Two models finite element are used in this study. One is the 2D axial-symmetric model and the other is the 3D. The 2D axial-symmetric model was employed to investigation the residual stress distribution in 4”, 6’’, and 8’’ wafer during the UBM sputtering process. The 3D model was used to study the effects of sputtering parameters, i.e. sputtering temperature and film thickness, on the residual stress distribution. The effect of etching process on the sputtered film has also been studied by using the 3D model. Results indicate the proposed model can simulate the residual stress distribution successfully.
目次 Table of Contents
目錄 i
圖目錄 iv
表目錄 viii
摘要 ix
Abstract x
第ㄧ章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-2-1 薄膜應力測量方法 2
1-2-2 材料性質相關文獻 6
1-3 研究動機與目標 7
第二章 UBM製程介紹與基本理論 10
2-1 UBM製程介紹 10
2-2薄膜應力基本理論 10
2-2-1本質應力 11
2-2-2熱應力(Thermal Stress) 12
2-3 有限元素理論 12
2-4模型驗證 15
第三章 二維軸對稱模型分析 18
3-1 有限元素分析模型 18
3-1-1 網格建立 18
3-1-3 材料參數 20
3-2 八吋晶圓之各層薄膜應力分析 21
3-3 薄膜應力與距離圓心位置之影響 23
3-4晶圓翹曲之探討 24
3-4-1 晶圓大小對晶圓翹曲之影響 24
3-4-2 基板厚度對晶圓翹曲之影響 24
3-4-3 薄膜厚度對晶圓翹曲之影響 25
3-5單層薄膜與多層薄膜之殘留應力分析 25
第四章 三維鍍膜分析與蝕刻效應 49
4-1 有限元素模型網格建立與各項條件 49
4-1-1 網格建立 49
4-1-2 條件設定 50
4-2 濺鍍後銅薄膜表面殘留應力之分佈 50
4-3 鍍膜溫度對單層薄膜殘留應力之影響 51
4-4鍍膜厚度與薄膜深度對殘留應力之影響 52
4-4-1鍍膜厚度對殘留應力之影響 52
4-4-2 薄膜深度對殘留應力的影響 53
4-5 蝕刻製程對薄膜應力之影響 53
4-5-1 條件設定 53
4-5-2 蝕刻製程後各薄膜殘留應力的分佈 54
第五章 結論 84
5-1 結論 84
參考文獻 86
參考文獻 References
[1]江國寧, 微電子系統封裝基礎理論與應用技術, 滄海書局, 2006。
[2] D. Resnik, U. Aljancic, D. Vrtacnik, M. Mozek, S. Amon, ‘‘Mechanical stress in thin film microstructures on silicon substrate,’’ Vacuum vol.80 , pp236-240, 2005.
[3] S. Massl, J. Keckes , R. Pippan, ‘‘A direct method of determining complex depth profiles of residual stresses in thin films on a nanoscale ,’’ Acta Materialia, vol.55, pp.4835–4844, 2007.
[4] J. Laconte , F. Iker , S. Jorez , N. Andre , J. Proost , T. Pardoen , D. Flandre, J.-P. Raskin, ‘‘Thin films stress extraction using micromachined structures and wafer curvature measurements,’’ Microelectronic Engineering, vol. 76, pp. 219–226, 2004.
[5] Z.M. Zhou, Y. Zhou, C.S. Yang, J.A. Chen, W. Ding, G.F. Ding, ‘‘The evaluation of Young’s modulus and residual stress of copper films by microbridge testing,’’ Sensors and Actuators A , vol. 127, pp. 392-397, 2006.
[6] J.D. Finegan and R. W. Hoffman, “Stress anisotropy in evaporated Iron films,”,J. Appl. Phys., vol. 30, pp. 597-598, 1959.
[7] A. K. Sinha, H. J. Levistein, and T. E. Smith, “Thermal stresses and cracking resistance of dielectric films on Si Substrates,” J. Appl. Phys., vol. 49, pp. 2423-2426, 1978.
[8] Y. Kim, S.H. Choo, ‘‘Measurements of residual stress in the thin film micro-gas sensors containing metallic layers,’’ Thin Solid Films vol. 394, pp. 284-291, 2001.
[9] T. Hanabusa, K. Kusaka, O. Sakata,‘‘Residual stress and thermal stress observation in thin copper film, ’’ Thin Solid Film, vol. 459, pp. 245-248, 2004.
[10] S. Brennan, Munkholm, O.S. Leung, W.D. Nix, ‘‘X-ray measurements of the depth dependence of stress in gold film,’’ Physica B, vol. 283, pp. 125-129, 2000.
[11] E. Eiper, J. Keckes, K.J. Martinschitz, I. Zizak, M. Cabie’, G. Dehm,‘‘Size-independent stresses in Al thin films thermally strained down to -100℃,’’ Acta Materialia, vol. 55, pp. 1941-1946, 2007.
[12]田春林, “光學薄膜應力與熱膨脹係數量測之研究”, 國立中央大學光電工程研究所博士論文, 2000。
[13] R. Ikeda, T. Uchiyama, H. Cho, T. Ogawa, M. Takemoto, ‘‘An advanced method for measuring the residual stress of deposited film utilizing laser spallation technique,’’ Science and Technology of Advanced Materials, vol. 7, pp. 90-96, 2006.
[14] S.M.M. Quintero, W.G. Quirino, A.L.C. Triques, L.C.G. Valente, A.M.B. Braga , C.A.Achete, M.Cremona, ‘‘Thin film stress measurement by fiber optic strain gage,’’ Thin Solid Films , vol. 494 ,pp. 141–145, 1998.
[15] Y.T. Yu, W.Z. Yuan, D.Y. Qiao, Q. Liang, “Evaluation of residual stresses in thin films by critical buckling observation of circular microstructures and finite element method,” Thin Solid Films, vol.516, pp. 4070–4075, 2008.
[16]周政翰, “薄膜應力之有限元素分析與評估”, 國立成功大學土木工程研究所碩士論文, 2006。
[17] C.Y. Liu, K. N. Tu, T. T. Sheng, C. H. Tung, D. R.Frear and P.Elenius, “Electron microscopy study of interfacial reaction between eutectic SnPb and Cu/Ni.V./Al thin film metallization,” J. Appl. Phys, vol.87(2), pp. 750, 2000.
[18] H. Huang and F. Spaepen,“Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multi-layers,” Acta mater , vol. 48 , pp. 3261-3269, 2000.
[19] H. Mizubayashi, J.Matsuno and H. Tanimoto,“Young’s modulus of silver films,” Scripta Materialia, Vol. 41, No.4, pp. 443–448, 1999
[20] H. Mizubayashi, T. Yamaguchi and Y. Yoshihara,“An elasticity study of Al and Ag nanometre films,” Journal of Alloys and Compounds, vol. 211-212, pp. 446-450, 1994.
[21] Y. Zhou , C.S. Yang, J.A. Chen, G.F. Ding, W. Ding, L. Wang, M.J. Wang , Y.M. Zhang , T.H. Zhang,“Measurement of Young’s modulus and residual stress of copper film electroplated on silicon wafer,” Thin Solid Films, vol.460, pp. 175–180,2004.
[22] J. H. Lau, Flip Chip Technologies, McGraw-Hill, New York, USA, 1996, Chapter 1.
[23] M. Pecht, Integrated Circuit, Hybrid, and Multichip Module Package Design Guidelines, John Wiley & Sons, New York, USA, 1994, Chapter7.
[24] K.L. Chopra, Mechanical effect in thin films, in Thin Film Phenomena, pp. 266, McGraw -Hill: New York, 1969.
[25] S. Tamulevicius, “Stress and Strain in the Vacuum Deposited thin Film,” Vacuum, vol.51, no.2, pp. 127-139, 1998.
[26] D. S. Campbell, Mechanical Properties of Thin Film. In Handbook of Thin Film Technology, L. I. Massel and R. Glang ed., New York McGraw-Hill Book Company, pp. 12-21, 1970.
[27] J.D. Wilcock, ”Stress in thin film,” Ph. D. Dissertation, Electrical Engineering Department, Imperial Collage, London University, London, 1967.
[28] E. Bauer, A.K. Green, and K.M. Kunz, “The formation of thin continuous films from isolated nuclei,” in Basic Problems in thin film Physics, edited by R. Niedermager and H. Mayer, Vandenhoeck and Ruprecht: Gottingen, pp. 135-151, 1966.
[29] R. W. Hoffman, “Stress in thin film: the relevance of gain boundaries and impurities,” Thin Solid Film, vol.34, pp.185-190, 1976.Nix, W. D. and Doerner, M. F., “Stresses and deformation processes in thin films on substrates, ” Crit. Rev. Solid State Mater. Sci., vol. 14, pp. 225-268, 1988.
[30] G. Dehm, T.J. Balk, H. Edongue, E. Arzt, “Small-scale plasticity in thin film Cu and Al films,” Microelectronic Engineering, vol. 70, pp. 412-424, 2003.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.206.12.31
論文開放下載的時間是 校外不公開

Your IP address is 18.206.12.31
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code