Responsive image
博碩士論文 etd-0721109-173808 詳細資訊
Title page for etd-0721109-173808
論文名稱
Title
光纖到家系統中再調變信號品質之研究
Basic Study of Re-modulated Signal Quality for Fiber-to-the-home (FTTH)
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
49
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-08
繳交日期
Date of Submission
2009-07-21
關鍵字
Keywords
再調變、光纖到家
FTTH, Re-modulated
統計
Statistics
本論文已被瀏覽 5721 次,被下載 1711
The thesis/dissertation has been browsed 5721 times, has been downloaded 1711 times.
中文摘要
100Gbit/s的資料傳輸速度在下一個世代的以太傳輸系統中是非常具有吸引力的,把這樣的高速傳輸應用在波分多工(WDM)系統中對建造一個有成本效益的光通訊網路是非常重要的。然而,要實現這樣的高速傳輸藉由傳統的振幅移鍵(ASK)技術是相當困難的。藉由正交頻分多工(OFDM)技術,則可以使用其他的調變方法取代傳統的振幅移鍵。由於使用這些調變技術在微波域比光域相對簡
單,因此藉由正交頻分多工技術來增加頻譜效率是比較容易的。這篇論文將會探討應用了正交頻分多工技術的100Gbit/s波分多工系統。針對8個頻道的100Gbit/s正交頻分多工系統的績效做了評估。模擬程式的結果顯示,所有頻道的誤碼率在500公里的傳輸之後都低於10-3,且可被正向錯誤更正改善。這個結果顯示應用了正交頻分多工的100Gbit/s傳輸系統的可能性。
成本是波分多工被動光網路最重要的考量。在波分多工被動光網路中,在兩端都必須設置光源以傳輸上行和下行的資料。在實際的應用上,在鄰近用戶端的光纖網路單元(ONU)開發一個低成本的光源是不可或缺的。為了發展一個簡單有效率的光纖網路單元,一個有潛力的作法是接受到來自交換中心(CO)的下行光後,重新調變成為上行光。這個方法可藉由在用戶端設置反射式半導體光放大器(RSOA)來實現,不需要在用戶端設置額外的光源。
對於傳統的光纖到家(FTTH)系統,下行和上行資料的調變方法都是強度調變直接檢測(IM/DD)。然而這個方法的缺點是再調變的上行光嚴重的受制於下行光的影響。為了解決這個問題,必須替換下行光的調變方法為另一種不同的調變方法,像是差分相位移鍵(DPSK)。在差分相位移鍵系統中,由於下行光的振幅並不會被調變,所以上行光不會下行光被影響。這篇論文主要在探討在兩種
不同的下行調變方法之下,再次調變的上行訊號品質。實驗結果顯示,針對上行訊號的品質,下行使用差分相位移鍵的調變模式比使用強度調變直接檢測要好,兩者的差異是17dB.
Abstract
100Gbit/s transmission data rate is very attractive for the next generation Ethernet
transport systems, and this kind of high-speed channel based WDM systems is very
attractive for constructing cost-effective optical transport networks. However, it is
quite difficult to achieve such high bit-rate by using the conventional amplitude shift
keying (ASK) technology. For the subcarrier modulation of the orthogonal frequency
division multiplexing (OFDM) scheme, it is possible to use various modulation
formats. It is relatively easy to use such an advanced format in the microwave domain
compared to the optical domain. Therefore, it is possible to increase the spectral
efficiency relatively easily by using the OFDM technology. In this master thesis, 100
Gbit/s WDM system with OFDM is discussed. The performance of 8 channels
100Gbit/s OFDM system was evaluated. The simulation result showed that the BER
of all channels were below 10-3 after 500 km transmission, and the performance could
be improved by using the FEC. This result shows the possibility of 100Gbit/s
transmission system using the OFDM technology.
The major concern of WDM-PON system is the cost. For WDM-PON system, it
needs several light sources for downstream signals and upstream signals. For the
practical implementation of WDM-PON, it is essential to develop a low-cost light
source in the optical network unit (ONU). In order to develop a simple efficient ONU,
a promising solution is re-modulated the downstream signal from central office (CO)
as the upstream signal at ONU using reflective semicounductor optical amplifier
(RSOA) so that there is no need to setup an additional light source at the ONU side.
For the conventional fiber-to-the-home (FTTH) system, the modulation format for
both downstream signal and upstream signal is intensity modulation with direct
detection (IM/DD). The demerit of the IM/DD scheme for the FTTH system is that
the performance of the re-modulated upstream signal is limited by the interference of
the downstream signal. In order to overcome this issue, the IM/DD format of
downstream should be replaced by some different formats such as differential phase
shift keying (DPSK). As there is no amplitude modulation for the DPSK downstream
signal, the re-modulated signal will not be affected by the downstream signal.
Therefore, this master thesis is focusing on comparing the re-modulated signal quality
for both IM/DD downstream and DPSK downstream. The experimental results shows
that the upstream signal of the DPSK downstream case shows better performance than
the IM/DD downstream case, and the performance difference of the re-modulated
signal is 17dB.
目次 Table of Contents
致謝..........................................................................................................................................I
中文摘要.........................................................................................................................II
ABSTRACT...................................................................................................................III
List of abbreviations...........................................................................................................IV
Chapter 1 Introduction………………………………………………………………1
1.1 Technological trend of the accss network……………………………………1
1.2 The concept of current PON system……………………………………………2
1.2.1 TDM-PON…………………………………………………………………2
1.2.2 WDM-PON………………………………………3
1.3 Motivation of this thesis…………………………………………………………4
Chapter 2 Simulation study of 100 Gbit/s WDM transmission using OFDM and
NZDSF……………………………………………………………………8
2.1 Introduction……………………………………………………………………8
2.2 The concept of OFDM…………………………………………………………8
2.2.1 The basic theory of OFDM…………………………………………………8
2.2.2 The merit of OFDM………………………………………………………9
2.3 Simulation………………………………………………………………………10
2.3.1 Simulation method……………………………………………………….10
2.3.2 Simulation model…………………………………………………………10
2.3.3 Simulation results and discussions……………………………………11
2.4 Conclusion……………………………………………………………………14
Chapter 3 Theoretical study of IM/DD and DPSK format………………………17
3.1 Introduction……………………………………………………………………17
3.2 Basic theory of IM/DD and DPSK ……………………………………………17
3.2.1 IM/DD scheme…………………………………………………………17
3.2.2 DPSK format………………………………………………………………18
Chapter 4 Technical problems existed in the proposed WDM-PON system……21
4.1 Introduction……………………………………………………………………21
4.2 Crosstalks due to Rayleigh backscattering in bidirectional optical fiber
transmission system……………………………………………………………22
4.3 Technical issues exist in the re-modulation scheme………………………23
4.3.1 Power issue………………………………………………………………23
4.3.2 Second modulation of the upstream signal………………………………23
Chapter 5 Basic study of re-modulated signal quality for fiber-to-the-home
(FTTH)……………………………………………………………………26
5.1 Introduction……………………………………………………………………26
5.2 Experimental setup……………………………………………………………26
5.3 Results and discussions………………………………………………………29
5.4 Conclusions…………………………………………………………………37
Chapter 6 Summary………………………………………………………………39
參考文獻 References
[1] S.-J. Park, C.-H. Lee, K.-T. Jeong, H.-J. Park, J.-G. Ahn, and K.-H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightwave Technol., vol. 22, pp. 2582–2591, Nov. 2004.
[2] F. Valera and J. Garcia and C. Guerrero and V. M. Ribeiro and V. Pinto, “Demo of triple play services with qos in a broadband access residential gateway,” In IEEE Infocom, April 2006. Barcelona, Spain.
[3] C. H. Lee, W. V. Sorin, and B. Y. Kim, “Fiber to the home using a PON infrastructure,” J. Lightwave Technol., vol. 24, pp. 4568–4583, Dec. 2006.
[4] K. Kim, “On the evolution of PON-based FTTH solutions,” Inform. Sci., vol. 149/1–2, pp. 21–30, Jan. 2003.
[5] C. H. Lee, “Passive optical networks for FTTX applications,” Proc. of OFC 2005, paper OWP3, 2005.
[6] F. An, K. Kim, D. Gutierrez, S. Yam, E. Hu, K. Shrikhande, and L.Kazovsky, “SUCCESS: A next-generation hybrid WDM/TDM optical access network architecture,” J. Lightwave Technol., vol. 22, pp. 2557–2569, Nov. 2004.
[7] Y. C. Chung, “Challenges towards practical WDM-PON”, Proc. of OECC 2006, paper 6C4-1, 2006.
[8] C. K. Chan, L. K. Chen, C. L. Lin, "WDM PON for next-generation optical broadband access networks," Proc. of OECC 2006, paper 5E2-1, 2006.
[9] F. Payoux, P. Chanclou, and N. Genay, “WDM-PON with colorless ONUs,” Proc. of OFC 2007, Paper OTuG5, 2007.
[10] W. R. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B.W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett., vol. 17, pp. 2460–2462, Nov. 2005.
[11] C. Arellano, C. Bock, and J. Prat, “RSOA-based optical network units for WDM-PON,” Proc. of OFC 2006, paper OTuC1, 2006.
[12] T. Y. Kim and S. K. Han, “Reflective SOA-based bidirectional WDM-PON sharing optical source for up/downlink data and broadcasting transmission,” IEEE Photon. Technol. Lett., vol. 18, pp. 2350–2352, Nov. 2006.
[13] P. Chanclou, F. Payoux, T. Soret, N. Genay, R. Brenot, F. Blache, M. Goix, J. Landreau, O. Legouezigou, and F. Mallecot, “Demonstration of RSOA-based remote modulation at 2.5 and 5 Gbit/s for WDMPON,” Proc. of OFC 2007, paper OWD1, 2007.
[14]G. W. Lu, N. Deng, C. K. Chan, L. K. Chen, “Use of downstream inverse-RZ signal for upstream data re-modulation in a WDM passive optical network,” Proc. of OFC 2005, paper OFI8, 2005.
[15] A. D. Ellis and F. C. G. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photon. Technol. Lett., vol. 17, pp. 504–506, Feb. 2005.
[16] K. Yonenaga, A. Sano, E. Yamazaki, F. Inuzuka, Y. Miyamoto, A. Takada, and T. Yamada, ”100 Gbit/s All-Optical OFDM Transmission Using 4x25 Gbit/s Optical Duobinary Signals with Phasecontrolled Optical Sub-Carriers”, Proc. of OFC 2008, paper JThA48, 2008.
[17] M. Abrams, P. C. Becker, Y. Fujimoto, V. O’Byrne, and D. Piehler, “FTTP deployments in the united states and Japan-equipment choices and service provider imperatives,” J. Lightwave Technol., vol. 23, pp. 236–246, Jan. 2005.
[18] D. Gutierrez, J. Cho, and L. G. Kazovsky, “TDM-PON security issues: Upstream encryption is needed,” Proc. of OFC 2007, paper JWA83, 2007.
[19] R. Lin, "Next Generation PON in Emerging Networks," Proc. of OFC2008, paper OWH1, 2008.
[20] H. Masuda, A. Sano, T. Kobayashi, E. Yoshida, Y. Miyamoto, Y. Hibino, K. Hagimoto, T. Yamada, T. Furuta, H. Fukuyama, “20.4-Tb/s (204 x 111Gb/s) transmission over 240km using bandwidth- maximized hybrid Raman/EDFAs,” Proc. of OFC 2007, Paper PDP20, 2007.
[21] P. J. Winzer, G. Raybon, S. Chandrasekhar, C. R. Doerr, T. Kawanishi, T. Sakamoto, K. Higuma, “10 x 107-Gb/s NRZ-DQPSK transmission at 1.0 b/s/Hz over 12 x 100 km including 6 optical routing nodes,” Proc. of OFC 2007, Paper PDP24, 2007.
[22] C.R.S. Fludger, T. Duthel, D. van den Borne, C. Schulien, E-D. Schmidt, T. Wuth, E. de Man, G. D. Khoe, and H. de Waardt, “10 x 111Gbit/s, 50GHz spaced, POLMUX-RZ-DQPSK transmission over 2375 km employing coherent equalisation,” Proc. of OFC 2007, Paper PDP22, 2007.
[23] K. Schuh, E. Lach, B. Junginger, G. Veith, J. Renaudier, G. Charlet, and P. Tran, “8 Tbit/s (80 x 107 Gb/s) DWDM ASK-NRZ VSB transmission over 510 km NZDSF with 1bit/s/Hz spectral efficiency,” Proc. of ECOC 2007, Paper PD1.8, 2007.
[24] K. Kim and A. Polydoros, “Digital modulation classification : The BPSK versus QPSK case ”, Proc. IEEE MIL. COM., pp. 431-436, Oct. 1988.
[25] C. V. Chong and V. Tarokh, “A simple encodable/decodable OFDM QPSK code with low peak-to-mean envelope power ratio,” IEEE Trans. Inform. Theory, vol. 47, pp. 3025–3029, Nov. 2001.
[26] H. Sanjo, E. Yamada, and Y. Yoshikuni, ”Optical orthogonal frequency division multiplexing using frequency/time domain filtering for high spectral efficiency up to 1 bit/s/Hz,” Proc. of OFC 2002, Paper ThD1, 2002.
[27] T. Kobayashi, A. Sano, E. Yamada, Y. Miyamoto, H. Takara and A. Takada, ”Electro-optically subcarrier multiplexed 110Gbit/s optical OFDM signal transmission over 80 km SMF without dispersion compensation,” Proc. of OECC 2007, Paper PD1-6, 2007.
[28] S. L. Jansen, I. Morita, and H. Tanaka, “16x52.5-Gb/s, 50-GHz spaced, POLMUX CO-OFDM transmission over 4,160 km of SSMF enabled by MIMO processing,” Proc. of ECOC 2007, Paper PD1.3, 2007.
[29] T. Pollet, M. van Bladel, and M. Moeneclaey, “BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise,” IEEE Trans. Commun., vol. 43, pp. 191–193, Feb./Mar./Apr. 1995.
[30] A. Czylwik, “Adaptive OFDM for wideband radio channels,” Proc. IEEE Global Telecommunications Conf. (GLOBECOM’96), London, U.K., Nov. 1996, pp. 713–718.
[31] G. Santella and F. Mazzenga, “A hybrid analytical-simulation procedure for performance evaluation in M-QAM-OFDM schemes in presence of nonlinear distortions,” IEEE Trans. Veh. Technol., vol. 47, pp. 142–151, Feb. 1998.
[32] G. P. Agrawal, Nonlinear Fiber Optics (Fourth Ed.), (Academic Press, San Diego, CA, 2006).
[33] N. Ramanujam, A.B. Puc, G. Lenner, H.D. Kidorf, C.R. Davidson, I. Hayee, J.-X. Cai, M. Nissov, A. Pilipetskii, C. Rivers, and N.S. Bergano, “Forward error correction (FEC) techniques in long-haul optical transmission systems”, Proc. of LEOS 2001, Paper WK1, 2001.
[34] E. Yamazaki, F. Inuzuka, A. Takada, K. Yonenaga, and T. Morioka, "Inter-channel crosstalk cancellation by encoding with adjacent channels in coherent WDM", Proc. of OFC 2006, Paper JThB6, 2006.
[35] K.Yonenaga, A. Sano, E. Yamazaki, F. Inuzuka, Y. Miyamoto, A. Takada, and T. Yamada”100 Gbit/s All-Optical OFDM Transmission Using 4x25 Gbit/s Optical Duobinary Signals with Phase-controlled Optical Sub-Carriers”, Proc. of OFC 2008, paper JThA48, 2008.
[36] G. P. Agrawal, Nonlinear Fiber Optics (Fourth Ed.), (Academic Press, San Diego, CA, 2006).
[37] M. Schwartz, Information Transmission, Modulation, and Noise (Fourth Ed.), (McGraw-Hill, New York, 1990).
[38] R. E. Ziemer, Principles of Communications; Systems, Modulation and Noise, (McGraw-Hill, New York, 1994).
[39] L. W. Couch , Digital and Analog Communication Systems (Fifth Ed.), (Prentice Hall, Upper Saddle River, NJ, 1995).
[40] M. S. Roden, Analog and Digital Communication Systems, (Prentice Hall, Upper Saddle River, NJ, 1995).
[41] B. P. Lathi, Modern Digital and Analog Communication Systems, (Oxford University Press, New York, 1995).
[42] W. R. Bennett, Communication Systems and Techniques, (IEEE Press, Piscataway, NJ, 1995).
[43] R. D. Feldman, E. E. Harstead, S. Jiang, T. H. Wood, and M. Zirngibl, “An evaluation of architectures incorporating wavelength division multiplexing for broad-band fiber access,” J. Lightwave Technol., vol. 16, pp. 1546–1559, Sep. 1998.
[44] T. H. Wood, R. D. Feldman, and R. F. Austin, “Demonstration of a cost-effective broadband passive optical network system,” IEEE Photon. Technol. Lett., vol. 6, pp. 575-578, Apr. 1994.
[45] J. L. Gimlett, M. Z. Iqbal, N. K. Cheung, A. Righetti, F. Fontana and G. Grasso, "Observation of equivalent Rayleigh scattering mirrors in lightwave systems with optical amplifiers", IEEE Photon. Technol. Lett., vol. 2, pp. 211 -213, Mar. 1990.
[46] S.-K. Liaw, S.-L. Tzeng and Y.-J. Hung, "Rayleigh backscattering induced power
penalty on bidirectional wavelength reuse fiber systems”, Optics Communications, vol.188, pp. 63-67, Feb. 2001.
[47] H. Takesue and T. Sugie, “Wavelength channel data rewrite using saturated SOA modulator for WDM networks with centralized light sources,” J. Lightwave Technol., vol. 21, pp. 2546–2556, Nov. 2003.
[48] J. Prat, M. Omella, and V. Polo, “Wavelength shifting for colorless ONUs in single-fiber WDM-PONs,” Proc. of OFC 2007, paper OTuG6, 2007.
[49] H. Taga, W.-T. Shih, J.-Y. Wu, S.-S. Shu, S.-E. Liu, T.-H. Wu, and Y.-J. Chiu, “Experimental demonstration of DWDM passive optical network with colorless ONU
incorporating wavelength interleaver,” Submitted to IEICE Trans. Commun.
[50] H. Takesue and T. Sugie, “Wavelength channel data rewrite using saturated SOA modulator for WDM networks with centralized light sources,” J. Lightwave Technol., vol. 21, pp. 2546–2556, Nov. 2003.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code