Responsive image
博碩士論文 etd-0721110-005028 詳細資訊
Title page for etd-0721110-005028
論文名稱
Title
流動注入化學蒸氣生成技術結合感應耦合電漿質譜儀於土壤中銅、鋅、鎘及中草藥中砷、汞、鉛分析之應用
none
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
145
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-09
繳交日期
Date of Submission
2010-07-21
關鍵字
Keywords
化學蒸氣生成、感應耦合電漿質譜儀、土壤、中草藥
Cu, Zn, Cd, As, Hg, Pb, CVG, ICP-MS, DRC
統計
Statistics
本論文已被瀏覽 5636 次,被下載 4
The thesis/dissertation has been browsed 5636 times, has been downloaded 4 times.
中文摘要
  化學蒸氣生成(Chemical Vapor Generation,CVG)是一種廣泛應用在原子光譜及質譜分析上的進樣方式,此方法利用氣體生成技術將分析物與溶液中之基質分離,具有增加分析物傳輸效率、提升靈敏度、降低偵測極限及減輕特定光譜干擾等優點。本研究結合CVG與感應耦合電漿質譜儀(Inductively coupled plasma mass spectrometry,ICP-MS)偵測土壤及中草藥樣品中重金屬元素。
  研究分為兩個部分,第一部分利用流動注入化學蒸氣生成技術結合動態反應室感應耦合電漿質譜儀(FI-CVG-DRC-ICP-MS)分析土壤樣品中銅、鋅及鎘的含量。ICP-MS以傳統氣動式霧化器進行土壤中銅、鋅及鎘分析時,因樣品中含有高濃度的鈦、鉬基質,其生成之TiO+及MoO+多原子離子會造成同質量干擾而影響銅、鋅及鎘之分析結果。藉由動態反應室(Dynamic Reaction Cell,DRC)降低光譜干擾時,無法以單一反應氣體同時克服TiO+及MoO+的干擾,故本研究期望藉由CVG加上氣液分離裝置將分析物與樣品溶液中之基質分離,以減輕TiO+及MoO+干擾。本研究探討了蒸氣生成系統的最適化條件,包括載體溶液中8-hydroxyquinoline、Co(II)與HNO3含量、NaBH4濃度、混合線圈長度及反應試劑流速等對分析物訊號的影響。在最適化條件下,顯示以CVG做為進樣裝置能有效將Mo分離,同時降低了Ti 對分析物離子訊號的干擾。而為了達到定量的準確性,進一步使用 DRC系統來改善TiO+的光譜干擾,研究中以NH3作為反應氣體,探討 DRC系統之最適化條件。將本研究所建立之FI-CVG-DRC-ICP-MS對土壤標準參考樣品Montana Soil及San Joaquin Soil進行分析,其結果與標準參考值相吻合,證明了使用本系統對土壤中銅、鋅及鎘元素同時進行偵測的可行性。
  第二部分則利用泥漿進樣結合CVG-ICP-MS測定中草藥樣品中砷、汞及鉛元素的含量。泥漿進樣具有簡化樣品前處理程序與減少污染物導入等優點,實驗中以中草藥藥粉為基質,探討CVG-ICP-MS系統條件之最適化,包括樣品及載體溶液中HCl與Citric acid濃度、NaBH4濃度K3Fe(CN)6濃度等。在最適化條件下於樣品基質中添加 0.5 ng mL-1砷與汞的元素標準溶液以測定訊號再現性,所測得之分析物訊號波峰面積相對標準偏差(RSD)皆於3.3%以下(n = 5)。由於樣品基質的差異造成了標準添加法及水溶液校正曲線法靈敏度的不同,因此本研究以標準添加法及同位素稀釋法進行定量。所得砷、汞及鉛的偵測極限皆小於10 pg mL-1。最後,將所開發之方法應用於標準參考樣品 NIST SRM 1547 Peach leaves及 NIST SRM 1573a Tomato leaves的分析,且檢測三種市售中草藥藥粉中砷、汞及鉛的含量,並將其結果與傳統微波消化定量作比較,進一步驗證此分析方法之準確性與可行性。
Abstract
none
目次 Table of Contents
目 錄
論文提要 I
謝誌 IV
目錄 V
圖表目錄 IX

第一章 流動注入化學蒸氣生成技術結合感應耦合電漿質譜儀於土壤樣品中銅、鋅及鎘之分析應用
壹、 前言 1
一、 研究背景 1
二、 流動注入分析法(Flow injection analysis,FIA) 5
三、 化學蒸氣生成法(Chemical vapor generation,CVG) 6
四、 動態反應室系統(Dynamic reaction cell,DRC) 11
五、 同位素稀釋法(Isotope dilution,ID) 13
貳、 實驗部份 15
一、 儀器裝置 15
二、 試劑藥品和溶液的配製 18
參、 實驗過程 21
一、 化學蒸氣生成系統各參數之探討 21
二、 ICP系統操作條件之探討 25
三、 光譜(同質量)干擾 26
四、 DRC系統之最適化 27
五、 再現性 28
六、 校正曲線與偵測極限的估計 28
七、 樣品前處理及分析 29
肆、 結果與討論 31
一、 化學蒸氣生成系統各參數之探討 32
二、 ICP系統操作條件之探討 43
三、 光譜(同質量)干擾 46
四、 DRC系統之最適化 52
五、 再現性 60
六、 校正曲線與偵測極限的估計 60
七、 樣品前處理及分析 64
伍、 結論 69
陸、 參考文獻 70




第二章 流動注入化學蒸氣生成技術結合感應耦合電漿質譜儀於泥漿中草藥樣品中砷、汞及鉛之分析應用
壹、 前言 76
一、 研究背景 76
二、 金屬的毒性及對人體的危害 79
貳、 實驗部份 80
一、 儀器裝置 81
二、 試劑藥品和溶液的配製 83
參、 實驗過程 85
一、 化學蒸氣生成系統各參數之探討 85
二、 ICP系統操作條件之探討 89
三、 光譜(同質量)干擾 91
四、 再現性 91
五、 校正曲線與偵測極限的估計 91
六、 樣品前處理及分析 92
肆、 結果與討論 95
一、 化學蒸氣生成系統各參數之探討 95
二、 ICP系統操作條件之探討 106
三、 光譜(同質量)干擾 109
四、 再現性 112
五、 校正曲線與偵測極限的估計 112
六、 樣品前處理及分析 119
伍、 結論 127
陸、 參考文獻 128



圖表目錄
第一章

圖1-1 photo-CVG系統示意圖 10
圖1-2 DRC-ICP-MS 儀器示意圖 12
圖1-3 流動注入化學蒸氣生成系統裝置圖 17
圖1-4 樣品及載體溶液中8-hydroxyquinoline濃度對訊號之影響 35
圖1-5 樣品及載體溶液中Co(II)濃度對分析物訊號之影響 37
圖1-6 NaBH4濃度對分析物訊號之影響 38
圖1-7 載體溶液及樣品中所含HNO3濃度對分析物訊號之影響 39
圖1-8 混合捲管長度對對分析物訊號之影響 41
圖1-9 反應試劑流速對分析物訊號之影響 42
圖1-10 電漿功率對分析物訊號之影響 45
圖1-11 載送氣體流速對分析物訊號之影響 47
圖1-12 模擬基質干擾程度 48
圖1-13 反應氣體NH3流速對63Cu(NH3)2+分析物訊號之影響 53
圖1-14 反應氣體NH3流速對68Zn分析物訊號之影響 54
圖1-15 反應氣體NH3流速對111Cd分析物訊號之影響 55
圖1-16 改變Rpq值對63Cu(NH3)2+分析物訊號之影響 57
圖1-17 改變Rpq值對68Zn及111Cd 預估偵測極限值的影響 58
圖1-18 改變AFV對63Cu(NH3)2+、68Zn及111Cd分析物訊號的影響 59
圖1-19 NIST SRM 2711以FI-CVG-ICP-MS分析之訊號圖 68

表1-1 標準參考土壤樣品中鈦、銅、鋅、鉬及鎘之含量 4
表1-2 可形成氫化物元素的物理性質 7
表1-3 銅、鋅及鎘同位素之含量比 22
表1-4 不同錯合試劑對銅、鋅及鎘訊號之比較 33
表1-5 FI-CVG最適化條件 44
表1-6 分析物與干擾物訊號之關係 50
表1-7 多原子離子對Cu、Zn及Cd訊號及同位素比例測量的影響 51
表1-8 DRC-ICP-MS系統操作條件 61
表1-9 分析物訊號再現性 62
表1-10 標準添加法與校正曲線法之比較 63
表1-11 土壤樣品中銅、鋅及鎘之定量結果 66
表1-12 土壤樣品中銅、鋅及鎘之定量結果 67

第二章

圖2-1 流動注入化學蒸氣生成之系統裝置圖 82
圖2-2 中草藥泥漿樣品製備流程圖 93
圖2-3 樣品及載體溶液中Citric acid濃度對分析物訊號之影響 99
圖2-4 NaBH4濃度對分析物訊號之影響 101
圖2-5 樣品及載體溶液中HCl 濃度對分析物訊號之影響 102
圖2-6 K3Fe(CN)6 濃度對分析物訊號之影響 104
圖2-7 反應試劑流速對分析物訊號之影響 105
圖2-8 電漿功率對分析物訊號之影響 108
圖2-9 載送氣體流速對分析物訊號之影響 110
圖2-10 泥漿中藥樣品前處理步驟圖 120
圖2-11 SRM 1547以泥漿進樣FI-CVG-ICP-MS分析之訊號圖 123
圖2-12 SRM 1573a以泥漿進樣FI-CVG-ICP-MS分析之訊號圖 124

表2-1 國際間中藥材重金屬之限量標準 77
表2-2 鉛及汞之同位素含量比 86
表2-3 微波消化步驟設定條件 96
表2-4 不同有機酸對砷、汞及鉛訊號之比較 98
表2-5 不同長度之mixing coil對CVG訊號生成的影響 107
表2-6 FI-CVG-ICP-MS最適化條件 111
表2-7 STD mode及DRC mode訊號之比較 113
表2-8 分析訊號之再現性 114
表2-9 標準添加法與校正曲線法斜率之比較 115
表2-10 標準添加法偵測極限 117
表2-11 中藥材斜率之比較 118
表2-12 樣品中砷、汞及鉛之定量結果 122
表2-13 中藥樣品中砷、汞及鉛之定量結果 125
表2-13 中藥樣品中砷、汞及鉛之定量結果 126
參考文獻 References
第一章

1. 行政院環境保護署土壤汙染管制標準 http://ivy5.epa.gov.tw/epalaw/docfile/140120.pdf

2. Adeloju, S. B.; Zhang, Y., Vapor generation atomic absorption spectrometric determination of cadmium in environmental samples with in-line anion exchange separation. Anal. Chem. 2009, 81 (11), 4249-4255.

3. Margetinova, J.; Houserova-Pelcova, P.; Kuba, V., Speciation analysis of mercury in sediments, zoobenthos and river water samples by high-performance liquid chromatography hyphenated to atomic fluorescence spectrometry following preconcentration by solid phase extraction. Anal. Chim. Acta 2008, 615 (2), 115-123.

4. Sandroni, V.; Smith, C. M. M., Microwave digestion of sludge, soil and sediment samples for metal analysis by inductively coupled plasma-atomic emission spectrometry. Anal. Chim. Acta 2002, 468 (2), 335-344.

5. Goossens, J.; Moens, L.; Dams, R., Inductively coupled plasma mass spectrometric determination of heavy metals in soil and sludge candidate reference materials. Anal. Chim. Acta 1995, 304 (3), 307-315.

6. Ivanova, J.; Djinggova, R.; Korhammer, S.; Markert, B., On the microwave digestion of soils and sediments for determination of lanthanides and some toxic and essential elements by inductively coupled plasma source mass spectrometry. Talanta 2001, 54 (4), 567-574.

7. Becker, J. S., Determination of trace elements in small amounts of environmental samples by ICP-MS: A review. Can. J. Anal. Sci. Spectrosc. 2002, 47 (4), 98-108.

8. Pohl, P., Recent advances in chemical vapour generation via reaction with sodium tetrahydroborate. Trends Anal. Chem. 2004, 23 (1), 21-27.

9. Sturgeon, R. E.; Guo, X.; Mester, Z., Chemical vapor generation: are further advances yet possible? Anal. Bioanal. Chem. 2005, 382 (4), 881-883.

10. Pohl, P.; Prusisz, B., Chemical vapor generation of noble metals for analytical spectrometry. Anal. Bioanal. Chem. 2007, 388 (4), 753-762.

11. Bermejo-Barrera, P., Use of high resolution continuum source atomic absorption spectrometry as a detector for chemically generated noble and transition metal vapors. Spectrochim. Acta Part B 2009, 64 (7), 659-665.

12. Sturgeon, R. E.; Liu, J.; Boyko, V. J.; Luong, V. T., Determination of copper in environmental matrices following vapor generation. Anal. Chem. 1996, 68 (11), 1883-1887.

13. Luna, A. S.; Sturgeon, R. E.; de Campos, R. C., Chemical vapor generation: atomic absorption by Ag, Au, Cu, and Zn following reduction of aquo ions with sodium tetrahydroborate(III). Anal. Chem. 2000, 72 (15), 3523-3531.

14. Peña-Vázquez, E.; Villanueva-Alonso, J.; Bermejo-Barrera, P., Optimization of a vapour generation method for metal determination using ICP-OES. J. Anal. At. Spectrom. 2007, 22 (6), 642–649.

15. Sun, H.; Suo, R.; Lu, Y., Determination of zinc in food using atomic fluorescence spectrometry by hydride generation from organized media. Anal. Chim. Acta 2002, 457 (2), 305-310.

16. Duan, X.; McLaughlin, R. L.; Brindle, I. D.; Conn, A., Investigations into the generation of Ag, Au, Cd, Co, Cu, Ni, Sn and Zn by vapour generation and their determination by inductively coupled plasma atomic emission spectrometry, together with a mass spectrometric study of volatile species. Determination of Ag, Au, Co, Cu, Ni and Zn in iron. J. Anal. At. Spectrom. 2002, 17 (3), 227-231.

17. Luna, A. S.; Pereira, H. B.; Takase, I.; Goncalves, R. A.; Sturgeon, R. E.; de Campos, R. C., Chemical vapor generation-electrothermal atomic absorption spectrometry: new perspectives. Spectrochim. Acta Part B 2002, 57 (12), 2047-2056.

18. http://www.gbw114.org/default.htm

19. http://www.nist.gov/ts/msd/srm/

20. Chang, C.C.; Liu, H. T.; Jiang, S. J., Bandpass reaction cell inductively coupled plasma mass spectrometry for the determination of silver and cadmium in samples in the presence of excess Zr, Nb and Mo. Anal. Chim. Acta 2003, 493 (2), 213-218.

21. Liu, H. T.; Jiang, S. J., Determination of copper in coal fly ash in the presence of excess titanium by dynamic reaction cell inductively coupled plasma mass spectrometry. Anal. Bioanal. Chem. 2003, 375 (2), 306-309.

22. J. Ruzicka and E. H. Hansen, “Flow Injection Analysis”, 2nd ed., Wiley, New York, 1988.

23. Thompson, K. C.; Thomerson, D. R., Atomic-absorption studies on the determination of antimony, arsenic, bismuth, germanium, lead, selenium, tellurium and tin by utilising the generation of covalent hydrides. Analyst 1974, 99 (1182), 595-601.

24. Yan, X. P.; Ni, Z. M., Vapour generation atomic absorption spectrometry. Anal. Chim. Acta 1994, 291 (1-2), 89-105.

25. Godden, R. G.; Thomerson, D. R., Generation of covalent hydrides in atomic-absorption spectroscopy. Analyst 1980, 105 (1257), 1137-1156.

26. Braman, R. S.; Justen, L. L.; Foreback, C. C., Direct volatilization-spectral emission type detection system for nanogram amounts of arsenic and antimony. Anal. Chem. 1972, 44 (13), 2195-2199.

27. Hatch, W. R.; Ott, W. L., Determination of submicrogram quantities of mercury by atomic absorption spectrophotometry. Anal Chem. 1968, 40 (14), 2085-2087.

28. Guo, X. M.; Sturgeon, R. E.; Mester, Z.; Gardner, G. J., Vapor generation by UV irradiation for sample introduction with atomic spectrometry. Anal. Chem., 2004, 76 (8), 2401-2405.

29. Ma, Q.; Zheng, C. B.; Hou, X. D., Photochemical vapor generation analytical atomic spectrometry for the determination of mercury. [http://www.paper.edu.cn]

30. Wu, P.; He, L.; Zheng, C. B.; Hou, X. D.; Sturgeon, R. E., Applications of chemical vapor generation in non-tetrahydroborate media to analytical atomic spectrometry. J. Anal. At. Spectrom. 2010,
[http://www.rsc.org.ezproxy.lib.nsysu.edu.tw:8080/delivery/_ArticleLinking/ArticleLinking.cfm?JournalCode=JA&Year=2010&ManuscriptID=c003483e&Iss=Advance_Article]

31. Tanner, S. D.; Baranov, V. I.; Bandura, D. R., Reaction cells and collision cells for ICP-MS: a tutorial review. Spectrochim. Acta Part B 2002, 57 (9), 1361-1452.

32. Tanner, S. D.; Baranov, V. I., A dynamic reaction cell for inductively coupled plasma mass spectrometry (ICP-DRC-MS). II. Reduction of interferences produced within the cell. J. Am. Soc. Mass Spectrom. 1990, 10 (11), 1083-1094.

33. Bandura, D. R.; Baranov, V. I.; Tanner, S. D., Detection of ultratrace phosphorus and sulfur by quadrupole ICPMS with dynamic reaction cell. Anal. Chem., 2002, 74 (7),1497-1502.

34. Milne, A.; Landing, W.; Bizimis, M.; Morton, P., Determination of Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb in seawater using high resolution magnetic sector inductively coupled mass spectrometry (HR-ICP-MS). Anal. Chim. Acta 2010, 665 (2), 200-207.
35. Zhu, Y.; Inagaki, K.; Chiba, K., Determination of Fe, Cu, Ni, and Zn in seawater by ID-ICP-MS after preconcentration using a syringe-driven chelating column. J. Anal. At. Spectrom. 2009, 24 (9), 1179-1183.

36. Vassileva, E.; Quetel, C. R., Certification measurement of the cadmium, copper and lead contents in rice using isotope dilution inductively coupled plasma mass spectrometry. Anal. Chim. Acta 2004, 519 (1), 79-86.

37. Hwang, T. J.; Jiang, S. J., Determination of copper, cadmium and lead in biological samples by isotope dilution inductively coupled plasma mass spectrometry after on-line pre-treatment by anodic stripping voltammetry. J. Anal. At. Spectrom. 1996, 11 (5), 353-357.

38. 黃覃君,"流動注入冷蒸氣生成裝置結合同位素稀釋感應偶合電漿質譜儀分析法定量真實樣品中微量鎘之研究",中山大學碩士論文, 民國88年7月。

39. Sun, H. W.; Suo, R., Investigation of enhancing effect for hydride generation-atomic fluorescence of transition metal elements. Spectrosc. Spectr. Anal. 2008, 28 (11), 2684-2690.

40. Sun, H. W.; Suo, R., Enhancement reagents for simultaneous vapor generation of zinc and cadmium with intermittent flow system coupled to atomic fluorescence spectrometry. Anal. Chim. Acta 2004, 509 (1), 71-76.

41. Lü, Y. K.; Sun, H. W.; Yuan, C. G.; Yan, X. P., Simultaneous determination of trace cadmium and arsenic in biological samples by hydride generation-double channel atomic fluorescence Spectrometry. Anal. Chem. 2002, 74 (7), 1525-1529.

42. Ke, Y.; Sun, Q.; Yang, Z.; Xin, J.; Chen, L.; Hou, X., Determination of trace cadmium and zinc in corn kernels and related soil samples by atomic absorption and chemical vapor generation atomic fluorescence after microwave-assisted digestion. Spectrosc. Lett. 2006, 39 (1), 29-43.

43. Guo, X. W.; Guo, X. M., Studies on the reaction between cadmium and potassium tetrahydroborate in aqueous solution and its application in atomic fluorescence spectrometry. Anal. Chim. Acta 1995, 310 (2), 377-385.

44. Li, G.; Wu, L.; Xin, J. J.; Hou, X. D., Chemical vapor generation by reaction of cadmium with potassium tetrahydroborate and sodium iodate in acidic aqueous solution for atomic fluorescence spectrometric application. J. Anal. At. Spectrom. 2004, 19 (8), 1010-1013.

45. Sanz-Medel, A.; Valdes-Hevia y Temprano, M. C.; Bordel Garcia, N.; Fernandez de la Campa, M. R., Generation of cadmium atoms at room temperature using vesicles and its application to cadmium determination by cold vapor atomic spectrometry. Anal. Chem. 1995, 67 (13), 2216-2223.

第二章

1. 盧芬鈴、陳儀驊、曾木全、羅吉方、林哲輝。2009。中藥材之重金屬檢驗(V)。藥物食品檢驗局調查研究年報,27: 51-64。

2. Division of Toxicology, Agency for Toxic Substances and Disease Registry, U.S. Department of Health and Human Services. 2007 CERCLA Priority List of Hazardous Substances. [http://www.atsdr.cdc.gov/cercla/07list.html].

3. Gomez, M. R.; Cerutti, S.; Sombra, L. L,; Silva, M. F.; Martínez, L. D., Determination of heavy metals for the quality control in argentinian herbal medicines by ETAAS and ICP-OES. Food Chem. Toxicol. 2007, 45 (6), 1060-1064.

4. Basgel, S.; Erdemoglu, S. B., Determination of mineral and trace elements in some medicinal herbs and their infusions consumed in Turkey. Sci. Total Environ. 2006, 359 (1-3), 82-89.

5. Liu, Z. F.; Sun, H. W.; Shen, S. G.; Li, L. Q.; Shi, H. M., Simultaneous determination of total arsenic and total selenium in Chinese medicinal herbs by hydride generation atomic fluorescence spectrometry in tartaric acid medium. Anal. Chim. Acta 2005, 550 (1-2), 151-155.

6. Deng, T.; Liao, M.; Jia, M., Arsenic speciation in Chinese herb Ligusticum chuanxiong hort by hydride generation atomic fluorescence spectrometry. Spectrosc. Lett. 2005, 38 (2), 109-119.

7. Long, Z.; Xin, J. J.; Hou, X. D., Determination of arsenic and mercury in Chinese medicinal herbs by atomic fluorescence spectrometry with closed-vessel microwave digestion. Spectrosc. Lett. 2004, 37 (3), 263-274.

8. Liu, D. L.; Ke, S. Y.; Ye, R.; Ding, M. Y., Determination of trace lead in traditional Chinese herbal medicine Astragalus by microwave digestion-CTAB enhancing-continual flow ingection hydride generation-ICP-AES. Spectrosc. Spectr. Anal. 2007, 27 (11), 2337-2340.

9. Shi, L. F.; Xue, D. F.; Xu, H. G.; Liu, H.; Teng, W. F., Determination of Pb, Cd, Hg and As in three sorts of Chinese traditional medicine treating tumor by ICP-MS. Spectrosc. Spectr. Anal. 2007, 27 (5), 1036-1037.

10. Wang, S. J.; Cao, L.; Chang, P.; Hou, T. P.; Hou, Y., Determination of rare earth and microelements in Chinese herbal medicine by inductively coupled plasma-mass spectrometry. Spectrosc. Spectr. Anal. 2006, 26 (7), 1330-1333.

11. Nagaswara Rao, R.; Kumar Talluri, M. V. N., An overview of recent applications of inductively coupled plasma-mass spectrometry (ICP-MS) in determination of inorganic impurities in drugs and pharmaceuticals. J. Pharm. Biomed. Anal. 2007, 43 (1), 1-13.

12. Ferreira, S. L.C.; Miro, M.; da Silva, E. G. P.; Matos, G. D.; dos Reis, P. S.; Brandao, G. C.; dos Santos, W. N. L.; Duarte, A. T.; Vale, M. G. R.; Araujo, R. G. O., Slurry Sampling-An Analytical Strategy for the Determination of Metals and Metalloids by Spectroanalytical Techniques. Appl. Spectrosc. Rev. 2010, 45 (1), 44-62.

13. Aranda, P. R.; Gil, R. A.; Moyano, S.; De Vito, I.; Martinez, L. D., Slurry sampling in serum blood for mercury determination by CV-AFS. J. Hazard. Mater. 2009, 161 (2-3), 1399-1403.

14. Caballo-Lopez, A.; de Castro, M. D. L., Determination of cadmium in leaves by ultrasound-assisted extraction prior to hydride generation, pervaporation and atomic absorption detection. Talanta 2007, 71 (5), 2074-2079.

15. Su, Y. Y.; Xu, K. L.; Gao, Y.; Hou, X. D., Determination of trace mercury in geological samples by direct slurry sampling cold vapor generation atomic absorption spectrometry. Microchim. Acta 2008, 160 (1-2), 191–195.

16. Vieira, M. A.; Ribeiro, A. S.; Curtius, A. J., Determination of As, Ge, Hg, Pb, Sb, Se and Sn in coal slurries by CVG-ETV-ICP-MS using external or isotopic dilution calibration. Microchem. J. 2006, 82 (2), 127-136.

17. dos Santos, E. J.; Herrmann, A. B.; Frescura, V. L. A.; Welz, B.; Curtius, A. J., Determination of lead in sediments and sewage sludge by on-line hydride-generation axial-view inductively-coupled plasma optical-emission spectrometry using slurry sampling. Anal. Bioanal. Chem. 2007, 388 (4), 863–868.

18. Torres, D. P.; Weira, M. A.; Ribeiro, A. S.; Curtius, A. J., Slurry sampling for arsenic determination in sediments by hydride generation atomic absorption spectrometry. J. Braz. Chem. Soc. 2007, 18 (4), 728-732.

19. Moreda-Pi˜neiro, J.; Moscoso-Perez, C.; Lopez-Mahia, P.; Muniategui-Lorenzo, S.; Fernandez, E.; Prada-Rodriguez, D., Use of aqueous slurries of coal fly ash samples for the direct determination of As, Sb, and Se by hydride generation-atomic fluorescence spectrometry. Atom. Spectros. 2006, 27 (1), 19-25.

20. 王有忠。1991。食品安全。pp.116-130。華香園出版社,台北。

21. http://ejournal.stpi.org.tw/NSC_INDEX/Journal/EJ0001/9904/9904-07.pdf

22. Chuang, I. C.; Chen, K. S.; Huang, Y. L.; Lee, P. N.; Lin, T. H., Determination of trace elements in some natural drugs by atomic absorption spectrometry. Biol. Trace Elem. Res. 2000, 76 (3), 235-244.

23. http://ejournal.stpi.org.tw/NSC_INDEX/Journal/EJ0001/9904/9904-07.pdf

24. http://www.healthliving.com/env/benv02.htm

25. 陳鳳儀,"流動注入化學蒸氣生成技術結合感應耦合電漿質譜儀以直接分析燃油與穀物樣品中鉛、鎘、汞及砷之應用\",中山大學碩士論文,民國97年6月。

26. Chen, H.; Brindle, I. D.; Le, X. C., Prereduction of arsenic(V) to arsenic(III), enhancement of the signal, and reduction of interferences by L-cysteine in the determination of arsenic by hydride generation. Anal. Chem. 1992, 64 (6), 667-672.

27. Chen, H.; Zhu, R.; Wu, J., Continuous plumbane generation in citric acid-potassium ferricyanide medium for the determination of lead in environmental samples by atomic absorption spectrometry. J. Environ. Sci. Health A 1994, 29 (5), 867-882.

28. Welz, B.; ucmanová, M., L-Cysteine as a reducing and releasing agent for the determination of antimony and arsenic using flow injection hydride generation atomic absorption spectrometry—Part 2. Interference studies and the analysis of copper and steel. Analyst 1993, 118 (6), 1425-1432.

29. Li, J.; Lu, F.; Umemura, T.; Tsunoda, K., Determination of lead by hydride generation inductively coupled plasma mass spectrometry. Anal. Chim. Acta 2000, 419 (1), 65-72.

30. Frank, J.; Krachler, M.; Shotyk, W., Direct determination of arsenic in acid digests of plant and peat samples using HG-AAS and ICP-SF-MS. Anal. Chim. Acta 2005, 530 (2), 307-316.

31. Vijian, P. N.; Wood, G. R., Semi-automated determination of lead by hydride generation and atomic-absorption spectrophotometry. Analyst, 1976, 101 (1209), 966 – 973.

32. 張尤子,"泥漿進樣及乳化法進樣結合蒸氣生成感應耦合電漿質譜儀於葉子及食用油中砷、銻、鉍、汞及鎘之分析應用",中山大學碩士論文,民國96年6月。

33. Johnson, M. O.; Cohly, H. H. P.; Isokpehi, R. D.; Awofolu, O. R., The case for visual analytics of arsenic concentrations in foods. Int. J. Environ. Res. Public Health 2010, 7 (5), 1970-1983.

34. Smith, E.; Juhasz, A.L.; Weber, J., Arsenic uptake and speciation in vegetables grown under greenhouse conditions. Environ. Geochem. Health 2009, 31 (1), 125-132.

35. 張嵐芳,"液相層析法結合感應耦合電漿質譜儀於生物樣品中汞及鉛物種分析之應用",中山大學碩士論文,民國96年7月。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.15.147.53
論文開放下載的時間是 校外不公開

Your IP address is 3.15.147.53
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code