Responsive image
博碩士論文 etd-0721111-110407 詳細資訊
Title page for etd-0721111-110407
論文名稱
Title
感應耦合電漿質譜儀於食品中多重微量元素與鉻、砷及硒物種型態分析之應用
Determination of Trace Multi-element in Foods and The Speciation Analysis of Cr、As and Se Using ICP-MS
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
132
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-13
繳交日期
Date of Submission
2011-07-21
關鍵字
Keywords
鉻、物種分析、液相層析儀、食品、感應耦合電漿質譜儀、硒、砷、薄膜去溶劑進樣裝置
Food, ICP-MS, ARIDUS, HPLC, species, Cr, Se, As
統計
Statistics
本論文已被瀏覽 5699 次,被下載 2468
The thesis/dissertation has been browsed 5699 times, has been downloaded 2468 times.
中文摘要
論文名稱:感應耦合電漿質譜儀於食品中多重微量元素與鉻、砷及硒物種型態分析之應用

校(院)所組別:國立中山大學 化學研究所分析組
畢業時間及提要別:九十九學年度第二學期 碩士學位論文提要
研究生:廖書翎 指導教授:江旭禎 博士
論文提要內容:
重金屬汙染的問題越來越受到重視,藉由環境以及食物鏈的累積,對於人體的影響是不可忽視的。所以期望可以建立一個簡單、快速、便宜、準確性高又能夠普遍的應用在一般的實驗室的分析方法,對於食品中多重微量元素進行分析。感應耦合電漿質譜儀 (ICP-MS) 結合了ICP原子化及游離化效率高之特性以及質譜儀高靈敏度和可測定同位素比的能力,使其成為極佳之微量元素分析技術。
本研究第一部分以感應耦合電漿質譜儀結合薄膜去溶劑進樣裝置 (Membrane Desolvation System,ARIDUS),分析食物樣品中Cr、Cu、Ga、Se、Mo、Ag、Cd、In、Sn、Hg 及Pb的含量。薄膜去溶劑進樣裝置利用微同心圓霧化器將樣品導入裝置中,並且利用可加熱之PTFE材質管狀薄膜將低沸點溶劑揮發成氣態分子,使其透出薄膜,期望可以減少溶劑中干擾物進到ICP-MS中,降低多原子離子所造成的干擾。在樣品前處理部分,利用硝酸與過氧化氫混合,配合微波消化法將樣品完全消化。為了能夠證明結合ARIDUS能夠有效的去除樣品基質所造成的干擾,實驗中探討了ARIDUS操作條件對離子訊號及模擬基質背景訊號的影響,而實驗結果證明在最適化條件下,和傳統氣動式霧化器比較,ARIDUS進樣裝置能夠有效的降低基質所造成的光譜性干擾,例如:40Ar12C+、35Cl16OH+、 40Ar35Cl+對52Cr+、75As+所造成的干擾。將所開發的方法應用於NRCC DOLT-3 標準參考樣品、NIST 1568a標準參考樣品、市售旗魚以及食米樣品中Cr、Cu、Ga、Se、Mo、Ag、Cd、In、Sn、Hg 及 Pb的分析,偵測極限在0.0002 μg L-1到0.04 μg L-1範圍之間。此分析方法簡單快速,適用於食物樣品中多重微量元素的例行分析。
然而金屬元素本身所含不同的氧化價數也會造成物種間性質差異甚大,相較於總量的測定,不同物種間的定量更能夠提供重要的生物資訊。
第二部分研究則是利用高效能液相層析 (High Performance Liquid Chromatography,HPLC) 結合感應耦合電漿質譜儀對食品中Cr、As及Se不同物種(Cr(III)、Cr(VI)、As(III)、As(V)、DMA、MMA、SeMet、Se(VI)、Se(IV))分離後進入感應耦合電漿質譜儀進行分析,並且搭配使用動態反應管,以降低多原子離子所造成的干擾。層析系統則是利用含有Tetra-n-butylammonium phosphate(TBAP)離子對試劑以及Ethylenediaminetetraacetic(EDTA)為螯合試劑的動相在pH=6.2環境下沖堤C18逆相管柱,配合流速的切換,在最適化條件下於1000秒內成功分離了九個物種。偵測極限範圍在0.016 μg L-1到0.19 μg L-1之間,各物種波峰高度及波峰面積的再現性皆優於4.8%(n = 5),利用此方法分析了美術館湖水、NRCC DORM-3(Fish protein)標準參考樣品、NIST 1566a(Oyster tissue)標準參考樣品、糖尿病配方補給錠及市售海藻錠,萃取方法則是利用含有1% HF、2 mM EDTA及0.5 mM TBAP的萃取液在90 oC下維持30分鐘,萃取後離心取上清液稀釋適當倍數後再以HPLC-DRC-ICP-MS定量,將所分析之結果與標準參考值和消化值比較,皆有不錯的一致性,而添加回收率則是在93%到108%範圍之間,進而表示此萃取方法的可行性。
Abstract
none
目次 Table of Contents
目錄

摘要………………………………………………………….………………….……...I
目錄……………………………………………………………………………......…III
圖表目錄………………………………………………………………………..….....V


第一章 感應耦合電漿質譜儀結合去薄膜溶劑進樣裝置於食物樣品中鉻、銅、鎵、砷、硒、鉬、銀、鎘、銦、錫、汞及鉛分析之應用

壹、前言…………………………………………………………..………………..….1
貳、實驗部分………………………………………………………..…………….…..4
一、儀器裝置其操作條件…………………………………………………...…..4
二、試劑及藥品………………………………………………….……….……...9
三、標準品及所需溶液之配製………………………………….………….…...9
四、樣品的製備與消化……………………………………………..…………..10
參、品質管制規範標準…………………………………………………..…………..14
肆、結果與討論………………………………………………………..……………..15
一、ARIDUS去溶劑進樣系統操作條件最適化探討……………..………….15
二、比較使用ARIDUS進樣及利用傳統氣動式霧化器進樣對基質干擾改善
之程度………………………………………………………..…………....26
三、校正曲線與偵測極限的估計…………………………………..…………..34
四、樣品定量分析…………………………………………………….……..34
伍、結論……………………………………………………………………….……..43
陸、參考文獻…………………………………………………..……..……..………44


第二章 液相層析結合動態反應管感應耦合電漿質譜儀於食品中鉻、砷及
硒物種型態分析之應用

壹、 前言………………………………………………………………..…………..49
貳、 實驗部分……………………………………………………………..…….….53
一、 動態反應管(Dynamic Reaction Cell,DRC)基本原理介紹……......53
二、 儀器裝置………………………………………………….….…..........…56
三、 藥品及溶液的配製……………………….………………….…….....….59
参、實驗過程………………………………………………………….……...........61
一、液相層析條件最適化探討…………………………………...…........….64
二、DRC-ICP-MS 系統最適化探討…………………………….…….….....64
三、再現性……………………………………………………….……...…....66
四、校正曲線與偵測極限估計………………………………………….…...66
五、萃取條件最適化………………………………………………....……....66
六、真實樣品分析……………………………………………………....…....67
肆、結果與討論……………………………………………………….….…..…....69
一、液相層析條件最適化探討……………………………………...….……69
二、DRC-ICP-MS系統最適化條件……………………………..……..……76
三、再現性…………………………………………………………..….…….95
四、校正曲線與偵測極限估計………………………………….…..……….98
五、萃取條件最適化…………………………………………….…..……….98
六、真實樣品分析……………………………………………………………98
伍、結論…………………………………………………………………………..114
陸、參考文獻……………………………………………………………………..115
 
圖表目錄
第一章

圖1-1、ICP-MS(ELAN 6100 DRC II)儀器示意圖………………………....……5
圖1-2、ARIDUS 之構造圖…………………………………..………………..….…..8
圖1-3、實驗步驟流程圖……………………………………………………..........…11
圖1-4、使用ARIDUS進樣系統探討霧化氣體流速對(a)模擬基質背景訊號(b)
分析物訊號,1 μg L-1 Cr,Cu,Ga,As及10 μg L-1 Se標準溶液(c)S/B
影響…………………………………………………………………………17
圖1-5、使用ARIDUS進樣系統探討霧化氣體流速對(a)模擬基質背景訊號(b)
分析物訊號,1 μg L-1 Mo,Ag,Cd,In,Sn,Hg及Pb標準溶液(c)S/B的影響。………………………………………………………..………18
圖1-6、使用ARIDUS進樣系統探討Spray chamber Temperature對(a)模擬基
質背景訊號(b)分析物訊號,1 μg L-1 Cr,Cu,Ga,As 及10 μg L-1 Se標準溶液(c)S/B的影響。………………..…………………….……….19
圖1-7、使用 ARIDUS進樣系統探討Spray chamber Temperature對 (a)模擬基
質背景訊號(b)分析物訊號,1 μg L-1 Mo,Ag,Cd,In,Sn,Hg及Pb標準溶液(c)S/B影響。………………………………………………..…20
圖1-8、使用ARIDUS進樣系統探討Sweep gas flow rate對(a)模擬基質背景訊
號(b)分析物訊號,1 μg L-1 Cr,Cu,Ga,As,10 μg L-1 Se標準溶液(c)S/B的影響。………………………………………………….…...…..22
圖1-9、使用ARIDUS進樣系統探討Sweep gas flow rate對(a)背景訊號(b)
分析物訊號,1 μg L-1 Mo,Ag,Cd,In,Sn,Hg及Pb標準溶液(c)S/B的影響。…………………………………………………..………...…..23
圖1-10、使用ARIDUS進樣系統探討Nitrogen gas flow rate對(a)模擬基質背
景訊號(b)分析物訊號,1 μg L-1 Cr,Cu,Ga,As及10 μg L-1 Se標準溶液(c)S/B的影響。…………………………………………………..…...24
圖1-11、使用ARIDUS進樣系統探討Nitrogen gas flow rate對(a)模擬基質背景訊號(b)分析物訊號,1 μg L-1 Mo,Ag,Cd,In,Sn,Hg及Pb標準溶液(c)S/B的影響。……………………………………………………….25
圖 1-12、使用ARIDUS進樣系統探討薄膜溫度對(a)模擬基質背景訊號(b)
分析物訊號,1 μg L-1 Cr, Cu,Ga,As標準溶液(c)S/B的影響。……….27
圖1-13、使用 ARIDUS 進樣系統探討薄膜溫度對(a)模擬基質背景訊號(b)
分析物訊號,1 μg L-1 Mo,Ag,Cd,In,Sn,Hg及Pb 標準溶液(c)S/B的影響。………………………………………….……..……………..28
圖1-14、使用ARIDUS進樣系統探討Membrane temperature 對(a)10 μg L-1 Se
標準溶液訊號以及模擬基質背景訊號(b)S/B的影響。…………..…….29
圖1-15、在ARIDUS進樣系統最適化條件下探討Forward power對(a)模擬基
質背景訊號(b)分析物訊號,1 μg L-1 Cr,Cu,Ga,As及10 μg L-1 Se
標準溶液(c)S/B的影響。…………………………………….……..…….31
圖1-16、在ARIDUS進樣系統最適化條件下探討Forward power對(a)模擬基
質背景訊號(b)分析物訊號,1 μg L-1 Mo,Ag,Cd,In,Sn,Hg及 Pb標準溶液(c)S/B的影響。………………………………………...…….32
圖 1-17、使用(a)普通霧化器及(b)ARIDUS進樣系統探討模擬基質對 Cr、
Cu、As及Cd之干擾影響。……………………………….………………33
表1-1、各偵測同位素之自然界含量與質量干擾。……………………………..….3
表1-2、ICP-MS 系統操作條件。………………………………………………...…..6
表1-3、市售魚肉樣品及標準參考樣品NRCC DOLT-3微波消化步驟設定條件。
………………………………………………………………………………12
表1-4、市售食米樣品及標準參考樣品NIST 1568a微波消化步驟設定條件。...12
表1-5、Aridus 系統操作條件。………………………………………………….…30
表1-6、比較各元素於不同進樣系統所測得之校正曲線及偵測極限。……………35
表1-7、於魚肉樣品中添加不同干擾物觀察Cr、As及Cd濃度的影響。……….…..36
表1-8、NIST 1568a及NRCC DOLT-3之定量結果。……………………………....38
表1-9、以ARIDUS-ICP-MS系統對市售旗魚樣品之分析結果。……………..…..39
表1-10、以ARIDUS-ICP-MS系統對市售食米樣品之分析結果。…….……..…40
表1-11、市售魚肉樣品分析精密度及添加回收率之探討。…………………….….41
表1-12、市售食米樣品分析精密度及添加回收率之探討。…………………….….42

第二章
圖2-1、EDTA之結構圖…………………………………………………………….54
圖2-2、TBAP之結構圖…………………………...………………………….……...54
圖2-3、DRC-ICP-MS儀器示圖………………………………….………….……….57
圖2-4、HPLC-DRC-ICP-MS 之系統圖……………………………………….…...58
圖2-5、砷物種的結構圖……………………………………………………..……...63
圖2-6、硒物種的結構圖……………………………………………………......…...63
圖2-7、真實樣品及標準參考樣品萃取流程圖。………………………….….…...70
圖2-8、改變動相的pH值對層析結果的影響。……………………………..…....71
圖2-9、改變動相TBAP濃度對層析結果的影響。…………………………..…...73
圖2-10、改變動相EDTA濃度對層析結果的影響。……………………….…..…74
圖2-11、改變動相MeOH濃度對層析結果的影響。………………………..…....…75
圖2-12、最適化分離條件下測定鉻、砷、硒物種及Cl-之層析圖。………….....79
圖2-13、反應氣體CH4流速對鉻分析物及背景訊號的影響。………………...…...81
圖2-14、反應氣體CH4流速對砷分析物及背景訊號的影響。………………...…...82
圖2-15、反應氣體CH4流速對硒分析物及背景訊號的影響。………………...…...83
圖2-16、反應氣體O2流速對鉻分析物及背景訊號的影響。…………………...…..84
圖2-17、反應氣體O2流速對砷分析物及背景訊號的影響。…………………...…..85
圖2-18、反應氣體O2流速對硒分析物及背景訊號的影響。……………….........…86
圖2-19、反應氣體CH4流速對鉻分析物及未添加Cl-之背景訊號的影響。.……....87
圖2-20、反應氣體O2流速對鉻分析物及未添加Cl-之背景訊號的影響。……....…88
圖2-21、改變CH4流速對預估偵測極限值(EDL)的影響。……………..……….....89
圖2-22、改變O2流速對預估偵測極限值(EDL)的影響。……………..…………...90
圖2-23、使用CH4為反應氣體,改變 Rpq 值對預估偵測極限值(EDL)的影
響。……………………………………………………………………..…..91
圖2-24、使用O2為反應氣體,改變 Rpq 值對預估偵測極限值(EDL)的影
響。……………………………………………………………….…….…..92
圖2-25、改變AFV對鉻、砷及硒訊號之影響。……………………….………...93
圖2-26、鉻、砷及硒在不同模式下之層析圖。………………………….……….96
圖2-27、添加不同濃度EDTA於萃取液中,探討糖尿病配方補給錠中鉻之相對
訊號。……………………………………………………………….….…101
圖2-28、改變HF濃度對鉻相對訊號的影響。……………………………….…102
圖2-29、美術館湖水之層析圖。………………………………………………..…..105
圖2-30、標準參考樣品 DORM-3 Fish protein之層析圖。…………….…….…..107
圖2-31、標準參考樣品1566a Oyster tissue之層析圖。………………….…...….109
圖2-32糖尿病配方補給錠萃取後所得鉻物種之層析圖。………………….…….111
圖2-33、市售海藻錠之層析。…………………………………………………….112
表2-1、各物種的半數致死量(50% lethal dose,mg kg-1)。………………........51
表2-2、鉻、砷及硒物種之化學式和解離常數pKa值。………………………….….62
表2-3、以ICP-MS分析鉻、砷及硒時常見之光譜干擾。………………………..65
表2-4、微波消化步驟設定條件。…………………………………………..…..….68
表2-5、甲醇濃度對各物種波峰高度與背景高度之比值(S / B)的影響。…….77
表2-6、鉻、砷及硒物種在液相層析系統之最適化分離條件。……………......…78
表2-7、DRC-ICP-MS 系統操作條件。……………………………………………94
表2-8、以HPLC-DRC-ICP-MS 測定鉻、砷及硒物種之滯留時間與分析訊號再現性。…………………………………………………………………………97
表2-9、以HPLC-DRC-ICP-MS 測定鉻、砷及硒物種之校正曲線及偵測極限…99
表2-10、鉻、砷及硒物種偵測極限之比較(μg L-1)。…………...…………...…..…100
表2-11、樣品中物種萃取量與總量之比較。………………………………..……..104
表2-12、以HPLC-DRC-ICP-MS測定美術館湖水中鉻及砷物種之含量。…...106
表2-13、以HPLC-DRC-ICP-MS 測定NIST DORM-3及NIST 1566a標準參考樣品中鉻及砷物種之含量。……………………………………….……...110
表2-14、以HPLC-DRC-ICP-MS測定糖尿病人補給錠及綠藻錠中鉻及砷物種之含量。………………………………………………………………...…...113

參考文獻 References
第一章
1. Dermot J.; Hayes.; Jason F.; Shogren.; Seung Y.S.; James B. K., Valuing Food Safety in Experimental Auction Markets. J. Agr. Econ.1995, 77(1), 40-53.
2. Krejpcio, Z.; Sionkowski, S.; Bartela, J., Safety of fresh fruits and juices
available on the polish market as determined by heavy metal residues. Pol. J. of Environ. Stud. 2005, 14 (6), 877-881.
3. Da-Col, J. A.; Domene, S. M. A.; Pereira, E. R., Fast Determination of Cd, Fe, Pb, and Zn in Food using AAS. Food Anal. Method. 2009, 2 (2), 110-115.
4. Sardans, J.; Montes, F.; Penuelas, J., Determination of As, Cd, Cu, Hg and Pb in biological samples by modern electrothermal atomic absorption spectrometry. Spectrochim. Acta Part B-Atomic Spectroscopy 2010, 65 (2), 97-112.
5. Ribeiro, A. S.; Moretto, A. L.; Arruda, M. A. Z.; Cadore, S., Analysis of powdered coffee and milk by ICPOES after sample treatment with tetramethylammonium hydroxide. Microchim. Acta 2003, 141 (3-4), 149-155.
6. Dolan, S. P.; Capar, S. G., Multi-element analysis of food by microwave digestion and inductively coupled plasma-atomic emission spectrometry. J. Food. Compos. Anal. 2002, 15 (5), 593-615.
7. de la Rocha, S. R.; Sanchez-Muniz, F. J.; Gomez-Juaristi, M.; Marin, M. T. L., Trace elements determination in edible seaweeds by an optimized and validated ICP-MS method. J. Food. Compos. Anal. 2009, 22 (4), 330-336.
8. Dernovics, M.; Lobinski, R., Speciation analysis of selenium metabolites in yeast-based food supplements by ICPMS - Assisted hydrophilic interaction HPLC - Hybrid linear ion trap/orbitrap MSn. Anal. Chem. 2008, 80 (11), 3975-3984.
9. Batista, B. L.; Rodrigues, J. L.; de Souza, S. S.; Souza, V. C. O.; Barbosa, F., Mercury speciation in seafood samples by LC-ICP-MS with a rapid ultrasound-assisted extraction procedure: Application to the determination of mercury in Brazilian seafood samples. Food Chem. 2011, 126 (4), 2000-2004.
10. Ferreira, H. S.; Santos, A. C. N.; Portugal, L. A.; Costa, A. C. S.; Miro, M.; Ferreira, S. L. C., Pre-concentration procedure for determination of copper and zinc in food samples by sequential multi-element flame atomic absorption spectrometry. Talanta 2008, 77 (1), 73-76.
11. Garivait, S.; Quisefit, J. P.; deChateaubourg, P.; Malingre, G., Multi-element analysis of plants by WDXRF using the scattered radiation correction method. X-Ray Spectrom. 1997, 26 (5), 257-264.
12. Nunes, L. S.; Barbosa, J. T. P.; Fernandes, A. P.; Lemos, V. A.; dos Santos, W. N. L.; Korn, M. G. A.; Teixeira, L. S. G., Multi-element determination of Cu, Fe, Ni and Zn content in vegetable oils samples by high-resolution continuum source atomic absorption spectrometry and microemulsion sample preparation. Food Chem. 2011, 127 (2), 780-783.
13. Coedo, A. G.; Dorado, T.; Fernandez, B. J.; Alguacil, F. J., Isotope dilution analysis for flow injection ICPMS determination of microgram per gram levels of boron in iron and steel after matrix removal. Anal. Chem. 1996, 68 (6), 991-996.
14. Beauchemin, D.; Specht, A. A., On-line isotope dilution analysis with ICPMS using reverse flow injection. Anal. Chem. 1997, 69 (16), 3183-3187.
15. Mora, J.; Maestre, S.; Hernandis, V.; Todoli, J. L., Liquid-sample introduction in plasma spectrometry. Trac-Trends in Anal. Chem. 2003, 22 (3), 123-132.
16. Thompson, K. C.; Thomerso.Dr, Atomic-Absorption Studies on Determination of Antimony, Arsenic, Bismuth, Germanium, Lead, Selenium, Tellurium and Tin by Utilizing Generation of Covalent Hydrides. Analyst 1974, 99 (1182), 595-601.
17. Yan, X. P.; Ni, Z. M., Vapor Generation Atomic-Absorption Spectrometry. Anal. Chim. Acta 1994, 291 (1-2), 89-105.
18. Asfaw, A.; Beauchemin, D., Improvement of the capabilities of inductively coupled plasma optical emission spectrometry by replacing the desolvation system of an ultrasonic nebulization system with a pre-evaporation tube. Spectrochim. Acta Part B-Atomic Spectroscopy 2010, 65 (5), 376-384.
19. Botto, R. I.; Zhu, J. J., Use of an Ultrasonic Nebulizer with Membrane Desolvation for Analysis of Volatile Solvents by Inductively-Coupled Plasma-Atomic Emission-Spectrometry. J. Anal. At. Spectrom. 1994, 9 (9), 905-912.
20. Crooks, W. J.; Choppin, G. R.; Saito, A., A General Technique for Heteropolyanion Analysis Using Inductively-Coupled Plasma-Atomic Emission-Spectroscopy, Atomic-Absorption Spectroscopy and Gravimetry. Analy. Lett. 1994, 27 (14), 2737-2750.
21. Brenner, I. B.; Zischka, M.; Maichin, B.; Knapp, G., Ca and Na interference effects in an axially viewed ICP using low and high aerosol loadings. J. Anal. At. Spectrom. 1998, 13 (11), 1257-1264.
22. Sun, Y. C.; Wu, S. H.; Lee, C. C., Investigation of non-spectroscopic interference and internal standardization method in axially and radially viewed inductively coupled plasma optical emission spectrometry using cross-flow and ultrasonic nebulization. J.Anal. At. Spectrom. 2003, 18 (9), 1163-1170.
23. Grotti, M.; Lagomarsino, C.; Mermet, J. M., Effect of operating conditions on excitation temperature and electron number density in axially-viewed ICP-OES with introduction of vapours or aerosols. J.Anal. At. Spectrom. 2006, 21 (9), 963-969.
24. Novotny, I.; Farinas, J. C.; Wan, J. L.; Poussel, E.; Mermet, J. M., Effect of power and carrier gas flow rate on the tolerance to water loading in inductively coupled plasma atomic emission spectrometry. Spectrochim. Acta Part B-Atomic Spectroscopy 1996, 51 (12), 1517-1526.
25. Hill, S. J.; Hartley, J.; Ebdon, L., Determination of Impurities in Organometallic Compounds Dissolved in Diethyl-Ether by Flow-Injection Inductively Coupled Plasma Mass-Spectrometry. J. Anal. At. Spectrom. 1992, 7 (6), 895-898.
26. Bendahl, L.; Gammelgaard, B., Sample introduction systems for reversed phase LC-ICP-MS of selenium using large amounts of methanol - comparison of systems based on membrane desolvation, a spray chamber and direct injection. J. Anal. At. Spectrom. 2005, 20 (5), 410-416.
27. Kruger, P. C.; Schell, L. M.; Stark, A. D.; Parsons, P. J., Lanthanide distribution in human placental tissue by membrane desolvation-ICP-MS. J. Anal. At. Spectrom. 2010, 25 (8), 1298-1307.
28. Fragniere, C.; Haldimann, M.; Eastgate, A.; Krahenbuhl, U., A direct ultratrace determination of platinum in environmental, food and biological samples by ICP-SFMS using a desolvation system. J. Anal. At. Spectrom. 2005, 20 (7), 626-630.
29. Kollensperger, G.; Hann, S.; Stingeder, G., Determination of Rh, Pd and Pt in environmental silica containing matrices: capabilities and limitations of ICP-SFMS. J. Anal. At. Spectrom. 2000, 15 (12), 1553-1557.
30. Hirata, T.; Kohge, I., Development of new desolvating sample introduction system for precise isotopic analysis of Fe by multiple collector-ICP-MS. Bunseki Kagaku 2005, 54 (5), 347-354.
31. You, C. F.; Li, M. D., Precise determination of sulfur isotopic ratio in aqueous solutions by inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom.2005, 20 (12), 1392-1394.
32. Vassileva, E.; Quetel, C. R., Certification measurement of the cadmium, copper and lead contents in rice using isotope dilution inductively coupled plasma mass spectrometry. Anal. Chim. Acta 2004, 519 (1), 79-86.
33. 行政院環境保護署環境檢驗所,廢棄土壤檢測方法,感應耦合電漿質譜法, M105. 00B, 2004.
34. U.S. EPA. Determination of trace element in water and wastes by inductively couple plasma - mass spectrometry. Method 200.8, Revision 5.5, 1999.
35. Elwaer, N.; Hintelmann, H., Comparative performance study of different sample introduction techniques for rapid and precise selenium isotope ratio determination using multi-collector inductively coupled plasma mass spectrometry (MC-ICP/MS). Anal. Bioanal. Chem. 2007, 389 (6), 1889-1899.
36. Akinbo, O. T.; Carnahan, J. W., Membrane desolvation for the analysis of organic solutions and liquid chromatographic samples with low power helium microwave induced plasma atomic emission detection. Anal. Chim. Acta 1999, 390 (1-3), 217-226.
37. Sung, Y. G.; Lim, H. B., Double membrane desolvator for direct analysis of isopropyl alcohol in inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry( ICP-MS). Microchem. J. 2000, 64 (1), 51-57.
38. Chung, C. H.; Brenner, I.; You, C. F., Comparison of microconcentric and membrane-desolvation sample introduction systems for determination of low rare earth element concentrations in surface and subsurface waters using sector field inductively coupled plasma mass spectrometry. Spectrochim. Acta Part B-Atomic Spectroscopy 2009, 64 (9), 849-856.
39. Yang, J. F.; Conver, T. S.; Koropchak, J. A.; Leighty, D. A., Use of a multi-tube Nafion(R) membrane dryer for desolvation with thermospray sample introduction to inductively coupled plasma-atomic emission spectrometry. Spectrochim. Acta Part B-Atomic Spectroscopy 1996, 51 (12), 1491-1503.

第二章
1. http://dohlaw.doh.gov.tw/Chi/FLAW/FLAWQRY01-1.asp
2. Pedrero, Z.; Murillo, S.; Camara, C.; Schram, E.; Luten,J. B.; Feldmann, I.; Jakubowski, N.; Madrid, Y., Selenium speciation in different organs of African catfish (Clarias gariepinus) enriched through a selenium-enriched garlic based diet. J. Anal. At. Spectrom. 2011, 26 (1), 116-125.
3. Narukawa, T.; Chiba, K., Heat-Assisted Aqueous Extraction of Rice Flour for Arsenic Speciation Analysis. J.Agr. Food Chem. 2010, 58 (14), 8183-8188.
4. Li, H. F.; Lombi, E.; Stroud, J. L.; McGrath, S. P.; Zhao, F. J., Selenium Speciation in Soil and Rice: Influence of Water Management and Se Fertilization. J.Agr. Food Chem. 2010, 58 (22), 11837-11843.
5. Batista, B. L.; Rodrigues, J. L.; de Souza, S. S.; Souza, V. C. O.; Barbosa, F., Mercury speciation in seafood samples by HPLC-ICP-MS with a rapid ultrasound-assisted extraction procedure: Application to the determination of mercury in Brazilian seafood samples. Food Chem. 2011, 126 (4), 2000-2004.
6. Chang, L. F.; Jiang, S. J.; Sahayam, A. C., Speciation analysis of mercury and lead in fish samples using liquid chromatography-inductively coupled plasma mass spectrometry. J. Chromatogr. A 2007, 1176 (1-2), 143-148.
7. Chen, J. H.; Jiang, S. J., Determination of cobalamin in nutritive supplements and chlorella foods by capillary electrophoresis-inductively coupled plasma mass spectrometry. J.Agr. Food Chem. 2008, 56 (4), 1210-1215.
8. Narayana, S. L.; Reddy, S. A. N.; Subbarao, Y.; Inseong, H.; Reddy, A. V., A simple and highly sensitive spectrophotometric determination of Cr(VI) in food samples by using 3,4-dihydroxybenzaldehydeisonicotinoylhydrazone (3,4-DHBINH). Food Chem. 2010, 121 (4), 1269-1273.
9. Rai D., Sass B.M., Moore D.A. Chromium(III) hydrolysis constant and solubility of Chromium(III) hydroxide.Inorg. Chem.1957, 26(3),345-349.
10. Offenbacher, E. G.; Pisunyer, F. X., Improvement of Glucose-Tolerance and Blood-Lipids in Elderly Subjects Given Chromium-Rich Yeast. Am. J. Clin.Nutr. 1980, 28 (2), 916.
11. Ravina, A.; Slezak, L.; Rubal, A.; Mirsky, N., Clinical use of the trace element chromium(III) in the treatment of diabetes mellitus. J. Trace Elem. Exp. Med. 1995, 8 (3), 183-190.
12. 陳婷婷,〝有機鉻製備技術開發及在降血糖之應用研究〞,民國九十五年五月
13. Hsieh, C. Y.; Tsai, M. H.; Ryan, D. K.; Pancorbo, O. C., Toxicity of the 13 priority pollutant metals to Vibrio fisheri in the Microtox (R) chronic toxicity test. Sci. Total Environ. 2004, 320 (1), 37-50.
14. Choi, H.; Park, S. K.; Kim, D. S.; Kim, M., Determination of 6 Arsenic Species Present in Seaweed by Solvent Extraction, Clean-up, and HPLC-ICP/MS. Food Sci. Biotechnol. 2011, 20 (1), 39-44.
15. Polak, M.; Opoka, R.; Cartwright, I. L., Response of fluctuating asymmetry to arsenic toxicity: support for the developmental selection hypothesis. Environ. Pollut. 2002, 118 (1), 19-28.
16. Cao, X.; Hao, C. L.; Wang, G.; Yang, H. H.; Chen, D. Y.; Wang, X. R., Sequential extraction combined with HPHPLC-ICP-MS for As speciation in dry seafood products. Food Chem. 2009, 113 (2), 720-726.
17. Rayman, M. P., The importance of selenium to human health. Lancet 2000, 356 (9225), 233-241.
18. Rayman, M. P.; Infante, H. G.; Sargent, M., Food-chain selenium and human health: spotlight on speciation. Brit. J.Nutr. 2008, 100 (2), 238-253.
19. Ip, C.; Birringer, M.; Block, E.; Kotrebai, M.; Tyson, J. F.; Uden, P. C.; Lisk, D. J., Chemical speciation influences comparative activity of selenium-enriched garlic and yeast in mammary cancer prevention.. J. Agr. Food Chem. 2000, 48 (9), 4452-4452.
20. Clark, L. C.; Combs, G. F.; Turnbull, B. W.; Slate, E. H.; Chalker, D. K.; Chow, J.; Davis, L. S.; Glover, R. A.; Graham, G. F.; Gross, E. G.; Krongrad, A.; Lesher, J. L.; Park, H. K.; Sanders, B. B.; Smith, C. L.; Taylor, J. R., Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin a randomized controlled trial - A randomized controlled trial. Jama-J. Am. Med. Assoc. 1996, 276 (24), 1957-1963.
21. Gabel-Jensen, C.; Gammelgaard, B., Selenium metabolism in hepatocytes incubated with selenite, selenate, selenomethionine, Se-methylselenocysteine and methylseleninc acid and analysed by HPLC-ICP-MS. J. Anal. At. Spectrom.2010, 25 (3), 414-418.
22. Hu, Y.; McIntosh, G. H.; Le Leu, R. K.; Woodman, R.; Young, G. P., Suppression of colorectal oncogenesis by selenium-enriched milk proteins: Apoptosis and K-ras mutations. Cancer Res. 2008, 68 (12), 4936-4944.
23. Bordoni, A.; Danesi, F.; Malaguti, M.; Di Nunzio, M.; Pasqui, F.; Maranesi, M.; Biagi, P. L., Dietary Selenium for the counteraction of oxidative damage: fortified foods or supplements? Brit. J.Nutr. 2008, 99 (1), 191-197.
24. Rayman, M. P., The use of high-selenium yeast to raise selenium status: how does it measure up? Brit. J.Nutr. 2004, 92 (4), 557-573.
25. Wang, J. S.; Chiu, K., Simultaneous extraction of Cr(III) and Cr(VI) with a dithiocarbamate reagent followed by HPLC separation for chromium speciation. Anal. Sci. 2004, 20 (5), 841-846.
26. Martinez-Bravo, Y.; Roig-Navarro, A. F.; Lopez, F. J.; Hernandez, F., Multielemental determination of arsenic, selenium and chromium(VI) species in water by high-performance liquid chromatography-inductively coupled plasma mass spectrometry. J. Chromatogr. A 2001, 926 (2), 265-274.
27. Harrington, C. F.; Clough, R.; Hansen, H. R.; Hill, S. J.; Tyson, J. F., Atomic spectrometry update. Elemental speciation. J. Anal. At. Spectrom. 2010, 25 (8), 1185-1216.
28. Shah, P.; Strezov, V.; Prince, K.; Nelson, P. F., Speciation of As, Cr, Se and Hg under coal fired power station conditions. Fuel 2008, 87 (10-11), 1859-1869.
29. Tsoi, Y. K.; Leung, K. S. Y., Simultaneous determination of seven elemental species in estuarine waters by HPLC-ICP-DRC-MS. J. Anal. At. Spectrom. 2010, 25 (6), 880-885.
30. Cox, A. G.; Cook, I. G.; Mcleod, C. W., Rapid Sequential Determination of Chromium(Iii) - Chromium(Vi) by Flow-Injection Analysis - Inductively Coupled Plasma Atomic-Emission Spectrometry. Analyst 1985, 110 (4), 331-333.
31. Mulugeta, M.; Wibetoe, G.; Engelsen, C. J.; Lund, W., Optimization of an anion-exchange high performance liquid chromatography-inductively coupled plasma-mass spectrometric method for the speciation analysis of oxyanion-forming metals and metalloids in leachates from cement-based materials. J. Chromatogr. A 2010, 1217 (40), 6186-6194.
32. Lu, C. Y.; Yan, X. P., Capillary electrophoresis on-line coupled with hydride generation-atomic fluorescence spectrometry for speciation analysis of selenium. Electrophoresis 2005, 26 (1), 155-160.
33. PantsarKallio, M.; Manninen, P. K. G., Speciation of chromium by coupled column HPHPLC-ICP-MS - The effects of interfering ions. Fresenius J. Anal. Chem. 1996, 355 (5-6), 716-718.
34. Byrdy, F. A.; Olson, L. K.; Vela, N. P.; Caruso, J. A., Chromium Speciation by Anion-Exchange High-Performance Liquid-Chromatography with Both Inductively-Coupled Plasma-Atomic Emission Spectroscopic and Inductively-Coupled Plasma-Mass Spectrometric Detection. J. Chromatogr. A 1995, 712 (2), 311-320.
35. Zoorob, G.; Tomlinson, M.; Wang, J. S.; Caruso, J., Evaluation of the Direct-Injection Nebulizer in the Coupling of Highperformance Liquid-Chromatography to Inductively-Coupled Plasma-Mass Spectrometry. J. Anal. At. Spectrom. 1995, 10 (10), 853-858.
36. Chen, Z. L.; Naidu, R.; Subramanian. A., Separation of chromium (III) and chromium (VI) by capillary electrophoresis using 2, 6-pyridinedicarboxylic acid as a pre-column complexation agent. J. Chromatogr. A 2001, 927 (1-2), 219-227.
37. Pettine, M.; Millero, F. J.; Lanoce, T., Chromium (Iii) Interactions in Seawater through Its Oxidation-Kinetics. Mar. Chem. 1991, 34 (1-2), 29-46.
38. Beauchemin, D.; Xing, L. Y., Chromium speciation at trace level in potable water using hyphenated ion exchange chromatography and inductively coupled plasma mass spectrometry with collision/reaction interface. J. Anal. At. Spectrom. 2010, 25 (7), 1046-1055.
39. Seby, F.; Charles, S.; Gagean, M.; Garraud, H.; Donard, O. F. X., Chromium speciation by hyphenation of high-performance liquid chromatography to inductively coupled plasma-mass spectrometry - study of the influence of interfering ions. J. Anal. At. Spectrom. 2003, 18 (11), 1386-1390.
40. Jiang, S. J.; Houk, R. S.; Stevens, M. A., Alleviation of Overlap Interferences for Determination of Potassium Isotope Ratios by Inductively Coupled Plasma Mass-Spectrometry. Anal. Chem. 1988, 60 (11), 1217-1221.
41. Field, M. P.; Cullen, J. T.; Sherrell, R. M., Direct determination of 10 trace metals in 50 mu L samples of coastal seawater using desolvating micronebulization sector field ICP-MS. J. Anal. At. Spectrom.1999, 14 (9), 1425-1431.
42. Davis, C. M.; Vincent, J. B., Chromium oligopeptide activates insulin receptor tyrosine kinase activity. Biochemistry 1997, 36 (15), 4382-4385.
43. Tanner, S. D.; Baranov, V. I., A dynamic reaction cell for inductively coupled plasma mass spectrometry (ICP-DRC-MS). II. Reduction of interferences produced within the cell. J. Am. Soc. Mass. Spectr. 1999, 10 (11), 1083-1094.
44. Bandura, D. R.; Baranov, V. I.; Tanner, S. D., Inductively coupled plasma mass spectrometer with axial field in a quadrupole reaction cell. J. Am. Soc. Mass. Spectr. 2002, 13 (10), 1176-1185.
45. Ogawa, Y.; Yamasaki, S.; Tsuchiya, N., Application of a Dynamic Reaction Cell (DRC) ICP-MS in Chromium and Iron Determinations in Rock, Soil and Terrestrial Water Samples. Anal. Sci. 2010, 26 (8), 867-872.
46. McCrindle, R. I.; Ambushe, A. A.; McCrindle, C. M. E., Speciation of chromium in cow's milk by solid-phase extraction/dynamic reaction cell inductively coupled plasma mass spectrometry( DRC-ICP-MS). J. Anal. At. Spectrom. 2009, 24 (4), 502-507.
47. Pick, D.; Leiterer, M.; Einax, J. W., Reduction of polyatomic interferences in biological material using dynamic reaction cell ICP-MS. Microchem. J. 2010, 95 (2), 315-319.
48. Gammelgaard, B.; Bendahl, L.; Jacobsen, N. W.; Sturup, S., Quantitative determination of selenium metabolites in human urine by HPLC-DRC-ICP-MS. J. Anal. At. Spectrom. 2005, 20 (9), 889-893.
49. Suner, M. A.; Devesa, V.; Rivas, I.; Velez, D.; Montoro, R., Speciation of cationic arsenic species in seafood by coupling liquid chromatography with hydride generation atomic fluorescence detection. J. Anal. At. Spectrom. 2000, 15 (11), 1501-1507.
50. Pergantis, S. A.; Wangkarn, S.; Francesconi, K. A.; Thomas-Oates, J. E., Identification of arsenosugars at the picogram level using nanoelectrospray quadrupole time-of-flight mass spectrometry. Anal. Chem. 2000, 72 (2), 357-366.
51. Caruso, J. A.; Heitkemper, D. T.; B'Hymer, C., An evaluation of extraction techniques for arsenic species from freeze-dried apple samples. Analyst 2001, 126 (2), 136-140.
52. Garcia-Manyes, S.; Jimenez, G.; Padro, A.; Rubio, R.; Rauret, G., Arsenic speciation in contaminated soils. Talanta 2002, 58 (1), 97-109.
53. Larsen, E. H.; Engman, J.; Sloth, J. J.; Hansen, M.; Jorhem, L., Determination of inorganic arsenic in white fish using microwave-assisted alkaline aHPLCoholic sample dissolution and HPLC-ICP-MS. Anal. Bioanal.Chem. 2005, 381 (2), 339-346.
54. Gilon, N.; Astruc, A.; Astruc, M.; Potingautier, M., Selenoamino Acid Speciation Using HpHPLC-Etaas Following an Enzymatic-Hydrolysis of Selenoprotein. Appl. Organomet. Chem. 1995, 9 (7), 623-628.
55. Kuo, C. Y.; Jiang, S. J.; Sahayam, A. C., Speciation of chromium and vanadium in environmental samples using HPLC-DRC-ICP-MS. J. Anal. At. Spectrom. 2007, 22 (6), 636-641.
56. Duzgoren-Aydin, N. S.; Avula, B.; Willett, K. L.; Khan, I. A., Determination of total and partially extractable solid-bound element concentrations using collision/reaction cell inductively coupled plasma-mass spectrometry and significance in environmental studies. Environ. Monit. Assess. 2011, 172(4), 51-66.
57. Nygren, Y.; Bjorn, E., Mobile phase selection for the combined use of liquid chromatography-inductively coupled plasma mass spectrometry and electrospray ionisation mass spectrometry. J. Chromatogr. A 2010, 1217 (30), 4980-4986.
58. Chang, Y. L.; Jiang, S. J., Determination of chromium species in water samples by liquid chromatography-inductively coupled plasma-dynamic reaction cell-mass spectrometry. J. Anal. At. Spectrom. 2001, 16 (8), 858-862.
59. Tanner, S. D.; Baranov, V. I.; Vollkopf, U., A dynamic reaction cell for inductively coupled plasma mass spectrometry (ICP-DRC-MS) - Part III. Optimization and analytical performance. J. Anal. At. Spectrom.2000, 15 (9), 1261-1269.
60. Bednar, A. J.; Kirgan, R. A.; Jones, W. T., Comparison of standard and reaction cell inductively coupled plasma mass spectrometry in the determination of chromium and selenium species by HPLC-ICP-MS. Anal.Chimi. Acta 2009, 632 (1), 27-34.
61. 賴佩珊,〝感應耦合電漿質譜儀於水樣中砷與硒之物種分析以及魚肉樣品中有機錫物種分析之應用〞,民國九十八年七月
62. 蔡佳穎,〝液相層析儀結合感應耦合電漿質譜儀於環境樣品中鉻與硒及穀物樣品中砷與硒型態分析之應用〞,民國九十八年七月
63. 朱韻菱,〝液相層析儀結合感應耦合電漿質譜儀於環境樣品中铊及食用油中砷物種分析之應用〞,民國九十八年七月
64. Wei, X. Y.; Brockhoff-Schwegel, C. A.; Creed, J. T., Application of sample pre-oxidation of arsenite in human urine prior to speciation via on-line photo-oxidation with membrane hydride generation and ICP-MS detection. Analyst 2000, 125 (6), 1215-1220.
65. Morton, J.; Leese, E., Arsenic speciation in clinical samples: urine analysis using fast micro-liquid chromatography ICP-MS. Anal. Bioanal. Chem. 2011, 399 (5), 1781-1788.
66. Reyes, L. H.; Mar, J. L. G.; Rahman, G. M. M.; Seybert, B.; Fahrenholz, T.; Kingston, H. M. S., Simultaneous determination of arsenic and selenium species in fish tissues using microwave-assisted enzymatic extraction and ion chromatography-inductively coupled plasma mass spectrometry. Talanta 2009, 78 (3), 983-990.
66. Yeh, C. F.; Jiang, S. J., Speciation of arsenic compounds in fish and oyster tissues by capillary electrophoresis-inductively coupled plasma-mass spectrometry. Electrophoresis 2005, 26 (7-8), 1615-1621.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code