Responsive image
博碩士論文 etd-0721111-113458 詳細資訊
Title page for etd-0721111-113458
論文名稱
Title
模態合成法用於端接渦輪葉片組之動態特性分析
Component Mode Synthesis Method on the Dynamic Characteristics of Shrouded Turbo Blades
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
123
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-01
繳交日期
Date of Submission
2011-07-21
關鍵字
Keywords
渦輪葉片、結構模態合成、動態特性分析、自然頻率、懸臂樑彎矩振動
natural frequency, dynamic analysis, turbine blades, bending vibration of cantilever beam, component mode synthesis
統計
Statistics
本論文已被瀏覽 5706 次,被下載 1689
The thesis/dissertation has been browsed 5706 times, has been downloaded 1689 times.
中文摘要
耦合渦輪葉片組的動態特性,是設計高性能汽渦輪機時關注的重點,而複雜的曲面導致葉片在分析動態特性上的困難,在大多數渦輪機組中,為增進葉片剛度而特用的多葉片耦合設計,更使得系統動態特性不易求取,在此類週期性元件組合的複雜系統中,往往須依賴有限元素法進行分析,然因其繁雜的曲面與錐度設計,使得在模式建立與計算方面均面臨許多困難與限制,更惶論在進行多參數變化分析時可能面臨之困難,為改善耦合渦輪葉片組設計時的分析效率。本文首先針對單一渦輪葉片進行簡化解析解,再利用模態合成法,藉由邊界條件的限制,對多葉片耦合系統進行合成分析。期望藉由該法對參數變化分析上的便利性,將其應用於耦合渦輪葉片組動態特性設計層級的分析上。
文中利用具側錐度與扭轉之懸臂樑,作為單一渦輪葉片的近似模型,且加入轉速效應考慮,建立單一葉片之簡化解析解,並利用此懸臂樑模型之解析解,使用模態合成法理論,對其進行週期性結構之邊界條件耦合,求解多葉片耦合後之系統動態特性。為證實該模擬在實際分析上的可行性,文中特別引用真實渦輪葉片作為模擬分析對象,文中亦分別利用數學解析與有限元素法,同時對單一葉片及耦合後之葉片組進行動態特性求解,藉由多項參數的變化比較其解之差異,亦驗證該解析方式的可靠度,並探討葉片設計上常使用的各項參數對系統最低自然頻率之影響,文中也分別討論該解析方法的優點與不足之處,為該解析方式用於渦輪葉片分析的可行性進行論證。
Abstract
The dynamic characteristics of shroud blade group played a significant role in steam turbine design. However, the complex shape and periodical structure of shroud blades make it so hard to find its dynamic characteristics under high speed operation. The complicate shape, periodic structure, and tedious computation limit the application of finite element method in the design analysis of shroud group blades. In order to design the shroud blade group, the component mode synthesis method was employed to derive the system dynamic equation of the grouped periodical blades.
For simplicity, a pre-twisted and tapered cantilever beam is used to derive the approximate analytic solution of a rotating turbo blade. Then the approximated eigen solution of single blade is synthesized in company with the constrain condition by using the component mode synthesis method. In order to confirm the feasibility of the proposed simulation method, a real size turbine blade is used to discuss in the study. Through a comparison between the results solved from the proposed method and finite element method of single blade and shroud blade group to prove the reliability of the proposed method. The effect of blade parameters on the dynamic characteristic of shroud blade group has investigated in this work. Numerical results indicate the proposed method is feasible and effective in dynamic design analyses of the shroud blade group.
目次 Table of Contents
目錄 i
圖目錄 iii
表目錄 vi
符號說明 vii
摘要 xii
Abstract xiii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 4
1.3 文獻回顧 7
1.4 組織與章節 11
第二章 葉片數學模型與模態合成理論 12
2.1 側縮懸臂樑之側向振動 12
2.1.1 寬度及厚度固定之懸臂樑 12
2.1.2 寬度固定厚度線性縮小之懸臂樑 15
2.1.3 寬度及厚度等比例線性縮小之懸臂樑 19
2.2 扭轉側縮懸臂樑之側向振動 23
2.3 模態合成法之分件結構表示 30
2.4 模態合成法之系統方程式 35
第三章 渦輪葉片有限元素分析 42
3.1 動力學數值分析理論 42
3.2 建模方法與基本假設 44
3.3 參數規劃 49
3.3.1 單一葉片分析參數規劃 49
3.3.2 多葉片端接分析參數規劃 54
第四章 結果與討論 59
4.1 葉片之數學模型近似及模態合成條件 59
4.2 可靠度分析與參數探討 66
4.2.1 單葉片模型之可靠度分析與參數探討 66
4.2.2 多葉片耦合系統之可靠度分析與參數探討 72
4.3 模態合成法應用於渦輪葉片之探討 80
4.3.1 動態特性完整度分析 80
4.3.2 數學模擬優勢探討 93
第五章 結論與未來展望 99
5.1 結論 99
5.2 未來展望 100
參考文獻 102

參考文獻 References
[1] Dokumaci, E., “Development and Application of the Finite Element Method to the Vibration Of Beams,” Ph.D. Dissertation, University of Surrey, England, 1968.
[2] Carnegie, W., Thomas, J., and Dokumaci, E., “An Improved Method of Matrix Displacement Analysis in Vibration Problems,” Aeronautical Quarterly, 20, pp. 321-331, 1969.
[3] Murthy, A. V. K. and Murthy, S. S., “Finite Element Analysis of Rotor,” Mechanism and Machine Theory, 12(4), pp. 311-317, 1977.
[4] Gupta, R. S. and Rao, S. S., “Finite Element Eigenvalue Analysis of Tapered and Twisted Timoshenko Beams,” Journal of Sound and Vibration, 56(2), pp. 187-193, 1978.
[5] Tsai, G. C., “Rotating Vibration Behavior of the Turbine Blades with Different Groups of Blades,” Journal of Sound and Vibration, 271, pp. 547-575, 2004.
[6] Kubiak, J., Urquiza, G., Rodriguez, J. A., Gonzalez, G., Rosales, I., Castillo, G., and Nebradt, J., “Failure Analysis of the 150MW Gas Turbine Blades,” Engineering Failure Analysis, 16, pp. 1794-1804, 2009.
[7] Cranch, E. T. and Adler, A. A., “Bending Vibration of Variable Section Beams,” Journal of Applied Mechanics, 23(1), pp. 103-108, 1956.
[8] Conway, H. D. and Dubil, J. F., “Vibration Frequencies of Truncated-cone and Wedge Beams,” Journal of Applied Mechanics, 32(4), pp. 932-934, 1965.
[9] Heidebrecht, A. C., “Vibration of Non-uniform Simply Supported Beams,” Journal of the Engineering Mechanics Division, 93(2), pp. 1-15, 1967.
[10] Mabie, H. H. and Rogers, C. B., “Transverse Vibrations of Tapered Cantilever Beams with End Support,” Journal of the Acoustical Society of America, 36(3), pp. 463-469, 1968.
[11] Mabie, H. H. and Rogers, C. B., “Transverse Vibrations of Double-tapered Cantilever Beams,” Journal of the Acoustical Society of America, 51, pp. 1771-1774, 1972.
[12] Mabie, H. H. and Rogers, C. B., “Transverse Vibrations of Double-tapered Cantilever Beams with End Support and with End Mass,” Journal of the Acoustical Society of America, 55, pp. 986-991, 1974.
[13] Bailey, C. D., “Direct Analytical Solution to Non-uniform Beam Problems,” Journal of Sound and Vibration, 56(4), pp. 501-507, 1978.
[14] Datta, A. K. and Sil, S. N., “An Analysis of Free Undamped Vibration of Beams of Varying Cross-section,” Computers & Structures, 59(3), pp. 479-483, 1996.
[15] Mehmet, C. E., Metin, A., and Vedat, T., “Vibration of a Variable Cross-section Beam,” Mechanics Research Communications, 34, pp. 78-84, 2007.
[16] Southwell, R. V. and Gough, F., “The Free Transverse Vibration of Airscrew Blades,” British A.R.C. Reports and Memoranda, 766, 1921.
[17] Schilhansl, M., “Bending Frequency of a Rotating Cantilever Beam,” Journal of Applied Mechanics, 25, pp. 28-30, 1958.
[18] Putter, S. and Manor, H., “Natural Frequencies of Radial Rotating Beams,” Journal of Sound and Vibration, 56, pp. 175-185, 1978.
[19] Yoo, H. H. and Shin, S. H., “Vibration Analysis of Rotating Cantilever Beams,” Journal of Sound and Vibration, 212(5), pp. 807-828, 1998.
[20] Yoo, H. H., Park, J. H., and Park, J. H., “Vibration Analysis of Rotating Pre-twisted Blades,” Computers & Structures, 79, pp. 1811-1819, 2001.
[21] Lee, S. H., Shin, S. H., and Yoo, H. H., “Flatwise Bending Vibration Analysis of Rotating Composite Cantilever Beams,” KSME International Journal, 18(2), pp. 240-245, 2004.
[22] Hurty, W. C., “Vibration of Structural System by Component Mode Synthesis,” Proc. ASCE, 85(4), pp. 51-69, August 1960.
[23] Hurty, W. C., “Dynamic Analysis of Structural Systems Using Component Modes,” Journal of AIAA, 3(4), pp. 678-685, April 1965.
[24] Bamford, R. M., “A Modal Combination Program for Dynamic Analysis of Structure,” Tech. Memo., Jet Propulsion Lab., Pasadena California, July 1967.
[25] Craig, R. R., Jr. and Bampton, M. C. C., “Coupling of Substructures for Dynamic Analysis,” Journal of AIAA, 6(7), pp. 1313-1319, 1968.
[26] Bajan, R. L., Feng, C. C., and Jaszlics, I. J., “Vibration Analysis of Complex Structural System by Modal Substitution,” Proc. 39th Shock Vib. Symp., Monterey California, 1968.
[27] Goldman, R. L., “Vibration Analysis by Dynamic Partitioning,” Journal of AIAA, 7(6), pp. 1152-1154, 1969.
[28] Hou, S., “Review of Modal Synthesis Techniques and a New Approach,” Shock Vib. Bult., 40(4), pp. 25-39, 1969.
[29] MacNeal, R. H., “A Hybrid Method of Component Mode Synthesis,” Computer & Structures, 1, pp. 581-601, 1971.
[30] Rubin, S., “Improved Component Mode Representation for Structural Dynamic Analysis,” Journal of AIAA, 13(8), pp. 995-1006, 1975.
[31] Hintz, R. M., “Analytical Methods in Component Modal Synthesis,” Journal of AIAA, 13(8), pp. 1007-1016, 1975.
[32] Chang, C. J., “A General Procedure for Substructure Coupling in Dynamic Analysis,” Ph.D. Dissertation, University of Texas at Austin, 1977.
[33] Kuhar, E. J. and Stahle, C. V., “A Dynamic Transformation Method for Modal Synthesis,” Journal of AIAA, 12(5), pp. 672-678, 1974.
[34] Kubomura, K., “A Theory of Substructure Modal Synthesis,” Journal of Applied Mechanics, 49, pp. 903-909, 1982.
[35] Kubomura, K., “Component Mode Synthesis for Damped Structures,” Journal of AIAA, 25, pp. 740-745, 1987.
[36] Kuang, J. H. and Tsuei, Y. G., “A More General Method of Substructure Mode Synthesis for Dynamic Analysis,” Journal of AIAA, 23(4), pp. 619-623, 1985.
[37] Yee, E. K. L. and Tsuei, Y. G., “Direct Component Modal Synthesis Technique for System Dynamic Analysis,” Journal of AIAA, 27, pp. 1083-1088, 1989.
[38] Yee, E. K. L. and Tsuei, Y. G., “Improved Method for the Lateral Vibration Analysis of A Robot System,” Journal of Propulsion, 6, pp. 165-170, 1990.
[39] Suarez, L. E. and Singh, M. P., “Improved Fixed Interface Method for Modal Synthesis,” Journal of AIAA, 30, pp. 2952-2958, 1992.
[40] Suarez, L. E. and Matheu, E. E., “A Modal Synthesis Technique Based on the Force Derivative Method,” Journal of Vibration and Acoustics, 144, pp. 209-216, 1992.
[41] Shyu, W. H., Ma, Z. D., and Hulbert, G. M., “A New Component Mode Synthesis Method: Quasi-Static Mode Compensation,” Journal of Finite Elements in Analysis and Design, 24, pp. 271-281, 1997.
[42] de Klerk, D., Rixen, D. J., and Voormeeren, S. N., “General Framework for Dynamic Substructuring: History, Review, and Classification of Techniques,” Journal of AIAA, 46(5), pp. 1169-1181, 2008.
[43] Klosterman, A. L., “On the Experimental Determination and Use of Modal Representations of Dynamic Characteristics,” Ph.D. Dissertation, University of Cincinnati at Ohio, 1971.
[44] Klosterman, A. L. and McClelland, W. A., “Combining Experimental and Analytical Techniques for Dynamic System Analysis,” Tokyo Seminar Finite Element Anal., Japan, November 1973.
[45] 李春穎,「不同振動模式用於振模合成法之分析」,國立中山大學機械與機電工程學系碩士班碩士論文,高雄,1985。
[46] Walton, W. C., Jr., and Steeves, E. C., “A New Matrix Theorem and It’s Application for Establish Independent Coordinates for Complex Dynamic System with Constraints,” NASA Tech. Rep. TR R-326, 1969.
[47] Meirovitch, L., Analytical Methods in Vibrations, Macmillan Company, London, 1967.
[48] Kuang, J. H. and Huang, B. W., “Mode Localization of a Cracked Bladed Disk,” Transactions of ASME, Journal of Engineering for Gas Turbines and Power, 121(2), pp. 335-341, April 1999.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code