Responsive image
博碩士論文 etd-0721111-154546 詳細資訊
Title page for etd-0721111-154546
論文名稱
Title
將膽固醇液晶摻入電解液應用於染料敏化太陽能電池 之研究
Study of dye-sensitized solar cell using cholesteric liquid crystals embedded electrolytes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
80
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-01
繳交日期
Date of Submission
2011-07-21
關鍵字
Keywords
染料敏化太陽能電池、液晶、相分離、光散射、膽固醇液晶
Liquid crystal, Dye sensitize solar cell, Phase Separation, Cholesteric liquid crystal, Light-scattering
統計
Statistics
本論文已被瀏覽 5713 次,被下載 0
The thesis/dissertation has been browsed 5713 times, has been downloaded 0 times.
中文摘要
本研究藉由將液晶分子(Liquid Crystal)摻入染料敏化太陽能電池中的液態電解液成功提升染料敏化太陽能電池的效率。當液晶分子散佈在液態電解液當中,由於液晶分子不均勻排列造成的折射率不匹配會導致光散射的產生,光散射的特性允許太陽光在元件內部的有更長的行進路徑,因此提高了N719染料的光捕獲效率。而且從實驗結果發現當添加液晶分子的濃度為20%時,染料敏化太陽能電池聚有最佳的元件光電轉效率。

此外,本研究也將膽液晶分子摻入染料敏化太陽能電池中的液態電解液,並且與摻入一般液晶的染料敏化太陽能電池比較。膽固醇液晶具有週期性螺旋排列的結構,當存在於電解液中,除了能維持光散射的特性,同時也具有選擇性反射的性質。因此相較與摻入一般液晶的染料敏化太陽能電池,將膽固醇液晶分子摻入的染料敏化太陽能電池結合光散射以及反射的效應,具有更佳的N719染料光捕獲效率。再者,當膽固醇的反射波段(480~580nm)與光電極中N719染料分子特徵吸收峰值相匹配時,染料敏化太陽能電池的染料激發將提高,使太陽能電池有更佳的表現。
Abstract
The study proposed a high efficient dye sensitize solar cell (DSSC) by embedding liquid crystal in liquid electrolyte. When liquid crystal molecules was disperse in the liquid electrolyte, the light-scattering occur due to refractive index mismatching by randomly oriented liquid crystal droplets. The light-scattering allows solar light have longer optical path length within the solar cell and therefore enhances light-trapping efficiency of N719 dye. The experiment results reveal that the DSSC with the liquid crystal concentration of 20 wt% have best electric conversion efficiency.
Moreover, the study also introduces chloseteric liquid crystal to the liquid electrolyte of a DSSC and compare with nematic liquid crystal embedded DSSC. The cholesteric liquid crystal with periodic helical structure in the liquid electrolyte provides not only light-scattering but also selective reflection. Compared with nematic liquid crystal embedded DSSC, the cholesteric liquid crystal embeded DSSC has a more large light-trapping efficiency due to combined effects of light scattering and selective reflection. Besides, when the reflective band (480~580nm) of cholesteric liquid crystal is matched to the absorption spectrum of N719 dye, the DSSC has better photoexcitation of dye and photovoltaic performance.
目次 Table of Contents
摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 ix
第一章 序 1
第二章 染料敏化太陽能電池與液晶介紹 2
2.1無機太陽能電池 2
2.2 有機太陽能電池 2
2.3染料敏化太陽能電池結構與原理 3
2.3.1染料敏化太陽能電池 3
2.3.2透明導電基板(TCO substrate) 4
2.3.3緻密層(Dense layer) 4
2.3.4二氧化鈦電極(TiO2光電極) 4
2.3.5染料 6
2.3.6電解液 7
2.3.7對電極(鉑電極) 7
2.4 染料敏化太陽能電池之工作原理 8
2.5 太陽能電池的性能參數 9
2.6液晶的介紹 11
2.6.1液晶分類 12
2.6.2液晶物理特性 14
2.6.3 PDLC(Polymer-Dispersed Liquid crystal)之簡介 17
第三章 文獻回顧與研究動機 20
3.1文獻回顧 20
3.2 研究動機 27
第四章 實驗方法與製程 29
4.1 設備介紹 29
4.1.1紫外與可見光光譜儀(UV-Vis spectrometer) 29
4.1.2 旋轉塗佈機(Spin Coating machine) 29
4.1.3高溫爐(high temperature furnace) 30
4.1.4太陽光譜模擬量測系統(solar simulator system) 31
4.1.5光電轉換效率量測系統(IPCE system) 33
4.1.6偏光顯微鏡(Polarizing microscop) 33
4.2材料介紹 34
4.2.1製作TiO2光電極層主要材料及染料 34
4.2.2自製電解液材料和所使用液晶材料、旋性物質及特性簡單說明 34
4.3 DSSC元件樣品製程 36
4.3.1 ITO基板的清潔流程 36
4.3.2配製TiO2緻密層溶液 36
4.3.3配製標準TiO2溶膠凝膠溶液 36
4.3.4配製標準電解液 37
4.3.5 TiO2光電極層製作 38
4.3.6高溫鍛燒與定義工作面積 40
4.3.7配製染料與浸泡 41
4.3.8 DSSC元件封裝 42
4.3.9注入電解質 43
4.3.10測量效率 44
第五章 實驗結果與討論 45
5.1摻液晶後的電解液光學特性之探討 45
5.2液晶分子相分離聚集程度影響元件效率參數之探討 47
5.3 不同款式液晶分子摻入電解液影響元件參數之探討 53
5.4 膽固醇液晶摻入電解液之特性探討 55
第六章 結論與未來工作 63
6.1結論 63
6.2未來工作 63
第七章 參考文獻 65
參考文獻 References
[1] Meng Tao ,“ Inorganic Photovoltaic Solar Cells: Silicon and Beyond”, The Electrochemical Society Interface , 30-35,(2008).
[2] Michael Grätzel, “Recent Advances in Sensitized Mesoscopic Solar Cells ”, Accounts of chemical research , Vol. 42, No. 11, 1788-1798, (2009).
[3] Michael Grätzel, “ Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells”, J. Photochem. Photobiol. A., Vol. 164, 3-14, (2004).
[4] Brian O'Regan,Michael Grätzel , “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature ,Vol. 353, 737-740, (1991).
[5] G.Sivalingam,“Photocatalytic degradation of various dyes by combustion synthesized nano anatase TiO2 ”, Applied Catalysis B: Environmental,Vol.45, 23-38 (2003).
[6] Juan Bisquert,“ Theory of the Impedance of Electron Diffusion and Recombination in a Thin Layer ”, J. Phys. Chem. B.,Vol.106 , 325-333, (2002).
[7] G. J. Meyer,“ Efficient Light-to-Electrical Energy Conversion: Nanocrystalline TiO2 Films Modified with Inorganic Sensitizers”, J. Chem. Educ., Vol.74, 652-656, (1997).
[8] Jun-Ho Yum, Mohammad K. Nazeeruddin, “ Recent Developments in Solid-State Dye-Sensitized Solar Cells ”, ChemSusChem, Vol.1. 699-707, (2008).
[9] 顧鴻壽, 編著,”光電液晶平面顯示器 第二版”,139-182, 新文京開發出版股份有限公司,台北縣中和市中山路二段362號8樓,(2004).
[10] A. Yariv, “Optical Electronics in Modern Communications ”, Oxford
University Press (1997).

[11] 林宗賢, “液晶光子晶體雷射現象與其光控制研究”, 國立成功大學物理研究所碩士論文(2004).
[12] J.W,Doane, “ Polymer dispersed liquid crystals for display application ”, Liquid Crysatal Institute ,(1988).
[13] Islam A. “ Molecular design of ruthenium(Ⅱ) polypyridyl photosensitizers for efficient nanocrystalline TiO2 solar cells ”, J. Photochem. Photobiol. A: Chem., Vol.158, 131-138, (2003).
[14] Sarmimala Hore, “ Influence of scattering layers on efficiency of dye-sensitized solar cells ”, Solar Energy Materials & Solar Cells, Vol. 90, 1176–1188, (2006).
[15] Nazeeruddin M K, Kay A, Rodicio I, et al. “ Conversion of Light to Electricity by cis-X2bis (2,2′-bipyridyl-4,4′-dicarboxylate) ruthenium(Ⅱ) Charge-Transfer Sensitizers (X = C~l, B~r, Ĩ, CÑ, and SCÑ) on Nanocrystalline TiO2 Electrodes ” ,
J. Am. Chem. Soc., Vol.115, 6382-6390, (1993).
[16] Hauch A, Georg A. “ Diffusion in the electrolyte and charge- transfer reaction at the platinum electrode in dye-sensitized solar cells ” Electrochimica Acta,Vol.46, 3457-3466, (2001).
[17] Xiaoming Fang, “ Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell ”, Journal of Electroanalytical Chemistry, Vol.570, 257-263, (2004).
[18] LIU Yong, “ A new improved structure of dye-sensitized solar cells with reflection film ” Chinese Science Bulletin, Vol. 51, No. 3 ,369-373,(2006).
[19] Yulia Galagan, “ Semitransparent organic solar cells with organic wavelength dependent reflectors ” Appl. Phys. Lett., Vol.98, 043302 ,(2011).
[20] Deng-Ke Yang, “ Bistable cholesteic reflective dispays: Materials and Drive Schemes ”Annu. Rev. Mater. Sci, Vol.27,117–146, (1997)
[21] Masafumi Yoshio, “ Layered Ionic Liquids: Anisotropic Ion Conduction in New Self-Organized Liquid-Crystalline Materials ”, Adv. Mater.,Vol.14, ( 2002).
[22] Sung Chul Kim, “ Liquid Crystals Embedded in Polymeric Electrolytes for Quasi-Solid State Dye-Sensitized Solar Cell Applications ”, Macromol. Chem. Phys, Vol.210, 1844–185, (2009).
[23] Meng Wang., “ A New Type of Electrolyte with a Light-Trapping Scheme for High-Efficiency Quasi-Solid-State Dye-Sensitized Solar Cells ”, Adv. Mater, Vol.22, 5526–5530,( 2010).
[24] Ryuji Kawano, “ High performance dye-sensitized solar cells using ionic liquids as their electrolytes ” J. Photochem. Photobiol. A: Chem.,Vol. 164, 87–92, (2004).
[25] Meng Wang, “ Liquid crystal based electrolyte with light trapping scheme for enhancing photovoltaic performance of quasi-solid-state dye-sensitized solar cells ” , Journal of Power Sources ,Vol.196, 5784–5791, (2011).
[26] M. Berginc, “ The effect of temperature on the performance of dye-sensitized solar cells based on a propyl-methyl-imidazolium iodide electrolyte ”, Solar Energy Materials & Solar Cells , Vol 91, 821-828, (2007).
[27] N. Koide, “ Improvement of efficiency of dye-sensitized solar cells based on analysis of equivalent circuit ”, J. Photochem. photobiol A: chem.,Vol.182, 296–305, (2006).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.17.79.60
論文開放下載的時間是 校外不公開

Your IP address is 3.17.79.60
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code