Responsive image
博碩士論文 etd-0721111-215031 詳細資訊
Title page for etd-0721111-215031
論文名稱
Title
金屬玻璃鍍膜對鎂合金表面之硬度改質
Surface Hardness Improvement in Magnesium Alloy by Metallic-Glass Sputtered Film
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
113
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-06-20
繳交日期
Date of Submission
2011-07-21
關鍵字
Keywords
奈米壓痕、非晶質薄膜、濺鍍、硬度、鎂合金
thin film metallic glass, sputtering, hardness, nanoindentation, Magnesium alloys
統計
Statistics
本論文已被瀏覽 5693 次,被下載 0
The thesis/dissertation has been browsed 5693 times, has been downloaded 0 times.
中文摘要
鈀銅矽非晶質薄膜的玻璃形成能力和硬度佳,因此被選為用來改善AZ31鎂合
金表面硬度的鍍層。實驗中,從三十到兩百奈米,不同厚度的鈀銅矽薄膜試片都
會經過微硬度還有奈米壓痕的測試。硬度和相對應的壓印深度可由一種量化模型
推算而出。相關的作用參數和硬度值可以經過反覆的計算得到。根據實驗結果顯
示,鎂合金的淺層區表面硬度可以藉由鈀銅矽非晶質薄膜,隨著壓印深度的減少
而大幅地提升。除此之外,使用比較薄的非晶質鍍層(例如兩百奈米),基板和薄
膜之間的作用會比較強。而使用比較厚的非晶質鍍層(例如兩千奈米),較容易造
成薄膜的破裂。本實驗估算,適當的非晶質薄膜厚度大約在兩百奈米左右。
關鍵字:鎂合金、硬度、濺鍍、非晶質薄膜、奈米壓痕
Abstract
The Pd77Cu6Si17 (PCS) thin film metallic glasses (TFMGs) with high glass forming
ability and hardness are selected as a hard coating for improving the surface hardness of
the AZ31 magnesium alloy. Both micro- and nano-indentation tests are conducted on
the specimens with various PCS film thicknesses from 30 to 2000 nm. The apparent
hardness and the relative indentation depth (β) are integrated by a quantitative model.
The involved interaction parameters and relative hardness values are extracted from
iterative calculations. According to the results, surface hardness can be enhanced greatly
by PCS TFMGs in the shallow region, followed by gradual decrease with increasing
β ratio. In addition, the specimens with thinner coating (for example, 200 nm) show
greater substrate-film interaction and those with thick coating (for example, 2000 nm)
become prone to film cracking. The optimum TFMG coating thickness in this study is
estimated to be around 200 nm.
Keywords: Magnesium alloys, hardness, sputtering, thin film metallic glass,
nanoindentation
目次 Table of Contents
Table of Content…………………………………………...……………………………..i
List of Tables……………………………………………………….……………..…….iv
List of Figures……………………………………………………………………...……v
致謝………………………………………………………………..……………………ix
中文摘要………………………………………………………………...………………x
Abstract…………………………………………………………...…………...………xi
Chapter 1 Introduction……………………………………………………….…………1
1-1 Characteristics of Mg alloys………………………………………...……….1
1-2 Classifications of magnesium alloys……………………………...…………3
1-3 Amorphous alloys……………………………………………………………4
1-4 Status of bulk metallic glasses and thin film metallic glasses…...…………..6
1-5 Motivation……………………………………………………...……………8
Chapter 2 Background and literature review…………….……………………..…….11
2-1 Applications of Mg alloys………………………………...…………..……11
2-2 Mg alloy systems………………………………………...…………...…….11
2-3 Fabrication of amorphous alloys…………………………...………………13
2-3-1 Cooling from gaseous state to the solid state……………...……...14
2-3-2 Cooling from liquid state to the solid state……………...………...15
2-3-3 Transformation from solid state to solid state…………………….16
2-4 Characteristics of amorphous alloys…………………………...…………...17
2-4-1 Glass forming ability (GFA)……………………...……………….17
2-4-2 Recently developed GFA criterions…………...…………………..18
2-5 Empirical rules for forming amorphous alloys……………...……………...19 ii
2-6 Physical vapor deposition………………………………...………………...21
2-6-1 Introduction of sputtering………………………...……………….21
2-6-2 DC and RF sputtering…………………………...………………...23
2-6-3 Nucleation and growth of thin films………………………………24
2-6-4 Growth of amorphous films…………………………………….....26
2-7 Properties of TFMGs……………………………………………...………..26
2-7-1 Thermal properties………………………………………………...27
2-7-2 Mechanical properties……………………………………………..28
2-7-3 Chemical properties…………………...…………………………..31
Chapter 3 Experimental Procedures………………………...………………………..32
3-1 Materials…………………………………………………...……………….32
3-2 Sample preparation……………………………………...………………….33
3-2-1 Substrate preparation…………………………...…………………33
3-2-2 Film preparation…………………………...……………………...33
3-3 Property measurements and analyses……………………...……………….34
3-4 Microhardness tests…………………………...……………………………35
3-5 Nanoindentation tests………………………………………...…………….35
3-6 Observation of indentation marks…………………………………………..36
Chapter 4 Results and Discussions…………………………………………………...37
4-1 Amorphous nature………………………………………………...………..37
4-2 Microhardness and Nanoindentation tests of Pd 77 Cu 6 Si 17 TFMGs on
AZ31……………...………………………………………………………...38
4-3 Hardness marks of Pd 77 Cu 6 Si 17 coatings on AZ31…………………………41
4-4 Hardness calculation and comparison………………….…………...……...45
Chapter 5 Conclusions………………………………………...……………………..50
References………………………………...……………………………………………52 Tables…………………………………………...………………………………………58
Figures…………………………………………...……………………………………..65
參考文獻 References
52
References
[1] Y. Kojima, Mater. Sci. Forum 3, 350-351 (2000).
[2] G. V. Raynor, The Physical Metallurgy of Magnesium and Its Alloys, Pergamon Press,
London. (1957).
[3] T. Lyman, H. E. Boyer, P. M. Unterwesier, J. E. Foster, J. P. Hontans and H. Lawton,
Metals Handbook, 8, ASM International, Metal Park, Ohio. (1975),
[4] R. W. Cahn, P. Hassen, E. J. Kramer, in Materials Science and Technology Structure and
Properties of Nonferrous Alloys, VCH, New York. (1996).
[5] A. C. Lund and C. A. Schuh. J. Appl. Phys. 95, 4815-4822 (2004).
[6] M. H. F. Overwijk, F. C. van den Heuvel and C. W. T. Bulle-Lieuwma, Vac. Sci. Technol.
B 11, 2021-2024 (1993).
[7] A. Inoue. Acta Mater. 48, 279-306 (2000).
[8] A. Inoue, A. Kato, T. Zhang, S.G. Kim, and T. Masumoto, Mater. Trans. 32, 606-609
(1991).
[9] J. Schroers, and N. Paton, Adv. Mater. Processes, 61-63 (2006).
[10] T. Fukushige, S. Hata, and A. Shimokohbe, J. Microelectromech. Syst. 14, 243-253
(2005).
[11] S. Bysakh, P.K. Das, and K. Chattopadhyay, Philos. Mag. A 81, 2689-2704 (2001). 53
[12] R. B. Schwarz, and W.L. Johnson, Phys. Rev. Lett. 51, 415-418 (1983).
[13] S. Hata, K. Sato, and A. Shimokohbe, Proc. SPIE, 97-108 (1999).
[14] J. P. Chu, C.T. Liu, T. Mahalingam, S.F. Wang, M.J. O'Keefe, B. Johnson, and C.H.
Kuo, Phys. Rev. B 69, 133410-1 - 113410-4 (2004).
[15] Y. Liu, S. Hata, K. Wada, and A. Shimokohbe, Jpn. J. Appl. Phys. 40, 5382-5388
(2001).
[16] G.P. Zhang, Y.D. Liu and B. Zhang, Scripta Mater. 54, 897-901 (2006).
[17] H. Hoche, H. Scheerer, D. Probst, E. Broszeit and C. Berger Surf. Coat. Technol.
174–175, 1018-10323 (2003).
[18] H. Friedrich and S. Schumann, J. of Mater. Proc. Technol. 117, 276-281 (2001).
[19] 葉峻轍,工業材料,186 期 82 (2002).
[20] 范元昌、蘇健忠、翁震灼、陳俊沐,工業材料,186 期 131 (2002).
[21] Q. D. Wang, W. D. Chen, X. Q. Zeng, Y.Z. Lu, W. J. Ding, Y. P. Zhu, X. P. Xu, M.
Mabuchi, J. Mater. Sci. 36, 3055 (2001).
[22] P. Li, B. Tang, E. G. Kandalova, Mater. Lett. 59, 671 (2005).
[23] B. L. Mordike, Mater. Sci. Eng. A324 ,103 (2002).
[24] 吳學陞. 工業材料 149, 154-165 (1999).
[25] K. L. Chopra. Thin Film Phenomena. McGraw-Hill, New York, USA. (1985).
[26] P. J. Hsieh. PhD Thesis, Nanocrystallization and Amorphization of Zr Base Alloys 54
during Accumulative Roll Bonding, National Sun Yat-Sen University, Kaohsiung, Taiwan,
(2004).
[27] W. Buckel. Z. Phys. 138, 136 (1954).
[28] E. J. Cotts, W. J. Meng and W. L. Johnson. Phys. Rev. Lett. 57, 2295-2298 (1986).
[29] J. Dudonis, R. Brucas and A. Miniotas. Thin Solid Films 275, 164-167 (1996).
[30] P. S. Grant. Prog. Mater. Sci. 39, 497-545 (1995).
[31] B. Li, N. Nordstrom and E. J. Lavernia. Mater. Sci. Eng. A 237, 207-215 (1997).
[32] R. S. Liu, J. Y. Li, K. J. Dong, C. X. Zheng and H. R. Liu. Mater. Sci. Eng. B 94,
141-148 (2002).
[33] C. R. M. Afonso, C. Bolfarini, C. S. Kiminami, N. D. Bassim, M. J. Kaufman, M. F.
Amateau, T. J. Eden and J. M. Galbraith. J. Non-Crystalline Solids 284, 134-138 (2001).
[34] W. Klement, R. H. Willens and P. Duwez. Nature 187, 869-870 (1960).
[35] M. S. El-Eskandarany and A. Inoue. Metall. Mater. Trans. A 33, 135-143 (2002).
[36] C. C. Koch, O. B. Kavin, C. G. Mckamey and J. O. Scarbrough. Appl. Phys. Lett. 43,
1017-1019 (1983).
[37] Y. Saito, H. Utsunomiya, N. Tsuji and T. Sakai. Acta Mater. 47, 579-583 (1999).
[38] Z. P. Xing, S. B. Kang and H. W. Kim. Metall. Mater. Trans. A 33A, 1521-1530 (2002).
[39] J. Lee, F. Zhou, K. H. Chung, N. J. Kim and E. J. Lavernia. Metall. Mater. Trans. A 32,
3109-3115 (2001). 55
[40] A. Sagel, H. Sieber, H. J. Fecht and J. H. Perepezko. Acta Mater. 46, 4233-4241 (1998).
[41] Z. P. Lu and C. T. Liu, Acta Mater. 50, 3501-3512 (2002).
[42] D. E. Polk, Acta Metall. 20, 485-& (1972).
[43] S. R. Nagel and J. Tauc, Phys. Rev. Lett. 35, 380-383 (1975).
[44] H. S. Chen and B. K. Park, Acta Metall. 21, 395-400 (1973).
[45] K. S. Dubey and P. Ramachandrarao, Int.l J. Rapid Solid. 5, 127-135 (1990).
[46] S. H. Whang, Mater. Sci. and Eng. 57, 87-95 (1983).
[47] T. Egami and Y. Waseda, J. of Non-Crystalline Solids 64, 113-134 (1984).
[48] Z. P. Lu, Y. Liu, and C. T. Liu, Evalution of glass-forming ability. Bulk Metallic Glasses,
ed. Michael K. Miller and P. K. Liaw., New York, Springer Science+Business Media. Chapter
4 (2008).
[49] G. J. Fan, H. Choo, and P. K. Liaw, J. of Non-Crystalline Solids 353, 102-107 (2007).
[50] Q. J. Chen, J. Shen, D. L. Zhang, H. B. Fan, J. Sun, and D. G. McCartney, Materials
Science and Engineering a-Structural Materials Properties Microstructure and Processing 433,
155-160 (2006).
[51] Z. P. Lu and C. T. Liu, Phys. Rev. Lett. 91 (2003).
[52] X. H. Du, J. C. Huang, K. C. Hsieh, Y. H. Lai, H. M. Chen, J. S. C. Jang, and P. K. Liaw,
Appl. Phys. Lett. 91 (2007).
[53] R. E. Reed-Hill, R. Abbaschian, Physical Metallurgy Principles, PWS, Boston, USA. 56
(1994).
[54] A. Inoue. Mater. Trans. JIM 36, 866-875 (1995).
[55] A. Inoue, A. Takeuchi and T. Zhang. Metall. Mater. Trans. A 29, 1779-1793 (1998).
[56] A. Inoue and K. Hashimoto. Amorphous and Nanocrystalline Materials: Preparation,
Properties, and Applications, Springer-Verlag, Berlin and Heidelberg. (2001).
[57] A. Takeuchi and A. Inoue. Mater. Trans. 41, 1372-1378 (2000).
[58] D. M. Mattox. Handbook of Physical Vapor Deposition (PVD) Processing, Noyes
publications, New Jersey. (1998).
[59] K. Wasa, and S. Hayakawa, Handbook of Sputter Deposition Technology. (1992)
[60] A. Sagel, H. Sieber, H. J. Fecht and J. H. Perepezko. Acta Mater. 46, 4233-4241 (1998).
[61] D. Turnbull. Contemp. Phys. 10, 473-488 (1969).
[62] S. Veprek and M. Heintz. Plas. Chem. Plas. Proc. 10, 3-26 (1990).
[63] S. Veprek and M. G. J. Veprek-Heijman. Appl. Phys. Lett. 56, 1766-1768 (1990).
[64] Y. Liu, S. Hata, K. Wada and A. Shimokohbe. 14th IEEE International Conference on
Micro Electro Mechanical Systems, 102-105 (2001).
[65] Y. P. Deng, Y. F. Guan, J. D. Fowlkes, S. Q. Wen, F. X. Liu, G. M. Pharr, P. K. Liaw, C. T.
Liu, and P. D. Rack, Intermetall. 15 1208-1216 (2007).
[66] F. Spaepen. Acta Matall. 25, 407-415 (1977).
[67] A. S. Argon. Acta Matall. 27, 47-58 (1979). [68] L. H. Dai, M. Yan, L. F. Liu and Y. L. Bai. Appl. Phys. Lett. 87, 141916 (2005).
[69] T. G. Park, S. Yi and D. H. Kim. Scripta Mater. 43, 109-114 (2000).
[70] S. Pang, T. Zhang, K. Asami and A. Inoue. Mater. Trans. JIM 42, 376-379 (2001).
[71] 張志溢,“以摩擦旋轉攪拌製程製作奈米細晶鎂基合金與複材之研發”,國立中山大
學博士論文 (2008)
[72] B. Navinsek, P. Panjan, J. Krusic. Surf. Coat. Tech. 98, 809-815 (1998).
[73] J. H. Ahn, D. Kwon. Mater. Sci. Eng. A 285, 172-179 (2000).
[74] J. R. Tuck, A. M. Korsunsky, D. G. Bhat, S. J. Bull. Surf. Coat. Tech. 139, 63-74 (2001).
[75] L. Qian, M. Li, Z. Zhou, H. Yang, X. Shi. Surf. Coat. Tech. 195, 264-271(2005).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.188.252.23
論文開放下載的時間是 校外不公開

Your IP address is 18.188.252.23
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code