Responsive image
博碩士論文 etd-0721112-172315 詳細資訊
Title page for etd-0721112-172315
論文名稱
Title
磺酸化聚芳香醚高分子之合成及其在燃料電池質子交 換膜上之應用
Synthesis and Application of Poly(arylene ether)s for Proton Exchange Membrane
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
123
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-28
繳交日期
Date of Submission
2012-07-21
關鍵字
Keywords
燃料電池、質子交換膜、質子導電度、聚芳香醚、磺酸化、微相分離
poly(arylene ether)s, phase-separation, proton conductivity, fuel cell, proton exchange membrane, sulfonated
統計
Statistics
本論文已被瀏覽 5699 次,被下載 0
The thesis/dissertation has been browsed 5699 times, has been downloaded 0 times.
中文摘要
質子交換膜燃料電池(Proton Exchange Membrane Fuel Cell, PEMFC)已被公認為未來之替代能源轉換科技之一。然而,因為許多技術上的問題仍待解決,因此距離廣泛的商業化要求,仍有很長遠的路要走。現階段主要的議題包括:(1)高溫、低濕環境下子交換膜功能不彰;(2)鉑觸媒一氧化碳中毒;及(3)價格昂貴等三大主題仍待克服。
作為好的質子交換膜必須具備:良好的微相分離型態、高質子導電度、尺寸安定、熱穩定性。目前文獻上雖已刊登sulfonated poly(ether ether ketone) (SPEEK), sulfonatedpolysulfone (SPSF), sulfonated polysulfide sulfone(SPSS), and polybenzimidazole(PBI)等高分子之磺酸化衍生物,但為了要達到良好的質子導電度,通常需要具有較高的磺酸化程度,亦即為離子交換能力(Ion Exchange Capacity, IEC)較大。卻使得這些材料本身的熱穩定性、尺寸安定性、吸水率及氧化穩定性皆有所下降。因此限制了燃料電池元件的操作效率。
故本論文以具有高度立體障礙性的多苯環的二氟單體和不同系列的二醇單體S1、S2、S3經由親核性(nucleophilic)聚縮合反應,產生三種型式之聚芳香醚高分子(P4b、P4c、P4d)。GPC結果顯示此系列新穎聚芳香醚高分子的分子量介於1.49×105~5.3×105 g/mol,分子量分布指數PDI(Mw/Mn)約為1.82~2,經由高分子主鏈之剛性結構設計,使得聚芳香醚高分子,不僅擁有良好之機械強度、熱安定性,且具有超高的熱裂解溫度(高於500℃)。高分子P4b、P4c、P4d經過磺酸化後,擁有很高的IEC數值(1~3.9 meq/g),綜合以上實驗結果,推估此系列的磺酸化聚芳香醚高分子運用在燃料電池之質子交換膜中會有不錯的成效。
Abstract
Proton Exchange Membrane Fuel Cell has the potential to become an important energy conversion technigne. Lots of efforts oriented toward the electrochemical conversion of energy using proton exchange membrane (PEM) fuel cells have been enormously accelerated with the hope to promote as an alternative power source for transport and portable purposes. However, they still suffer from such disadvantages as limited operation temperature, high cost, insufficient durability and high methanol permeability.Good membranes should meet several strict requirements as follows; reasonable proton conductivity, high stability and durny the performance of a fuel cell environment,outstanding mechanical toughness, high heat endurance, and impermeability to fuel gas or liquid. Presently,a lot of references have mentioned some sulfonatied polymer sulfonated of poly(ether ether ketone) (SPEEK), sulfonatedpolysulfone (SPSF), sulfonated polysulfide sulfone(SPSS), and polybenzimidazole(PBI) and so on.To achieve high proton conductivity usually match with a high degree of sulfonation that means owning a large Ion Exchange Capacity, IEC.But which in turn leads to a decrease in the electrochemical、dimensional stability、water uptake、oxidative stability.
Therefore they suffer from such disadvantages as limited operation range of temperature.Three aromatic poly(arylene ether)s P4b、P4c、P4d were synthesized from the polymer consists nine of polyaromatic groups with bisfluoride monomer at studying long time in our laboratory with S1、S2、S3 diol monomer.The molecular weight of the polymer (Mw:1.49×105~5.3×105 g/mol ,PDI: 1.82~2)This polymer has high strength,thermal stability and all of polymers own very high Td ,which are over than 500oC.We sulfonatied the polymer in order to apply as the proton exchange membrane of a fuel cell.The results showed after sulfonation of P4b、P4c、P4d.All IEC reaches 3.9~1(meq/g).According to above result, we propose the aromatic poly(arylene ether)s is good matenal can be used on all application as a proton exchange membrane.
目次 Table of Contents
摘要 II
ABSTRACT III
第一章 緒論 1
1.1前言 1
1.2燃料電池 2
1.2.1燃料電池簡介 2
1.2.2鹼性燃料電池(Alkaline fuel cell,AFC) 5
1.2.3磷酸燃料電池(Phosphoric acid fuel cell,PAFC) 6
1.2.4熔融碳酸鹽燃料電池(Molten Carbonate Fuel Cell,MCFC) 7
1.2.5固態氧化物燃料電池SOFC(Solid Oxide Fuel Cell) 8
1.2.6質子交換膜燃料電池運作機制 9
1.3質子交換膜目前發展 12
1.4研究動機 18
第二章儀器及藥品介紹 19
2.1藥品 19
2.2實驗儀器與測試方法 19
第三章實驗 24
3.1 二醇單體及高分子製備流程 24
3.2 二醇單體合成 25
3.2.1 2,7-Bis-(4-methoxy-phenyl)-9,9-diphenyl-9H-fluorene 25
3.2.2 2,7-Bis[4-hydroxyphenyl]fluorene-9,9-fluorene 27
3.2.3 Spiro-9-{2,7-bis[4-methoxyphenyl]fluorene}-9’-fluorene 28
3.2.4 Spiro-9-{2,7-bis[4-hydroxyphenyl]fluorene}-9’-fluorene 30
3.2.5 2,7-Dibromo-9-(2-phenoxyphenyl)-9-fluorenol 31
3.2.6 Spiro-9-(2,7-dibromofluorene)-9'-xanthene 32
3.2.7 Spiro-9-{2,7-bis[4-methoxyphenyl]fluorene}-9’-xanthene 33
3.2.8 Spiro-9-{2,7-bis[4-hydroxyphenyl]fluorene}-9’-xanthene 35
3.3高分子聚合 37
3.3.1 高分子( P4b) 37
3.3.2 高分子(P4c) 39
3.3.3 高分子(P4d) 40
3.4高分子薄膜製備 43
3.5高分子磺酸化 44
3.6高分子磺酸化後處理 46
(a)薄膜製備 46
(b)IEC測定[42-43] 46
(c)Water Uptake Measurements[42-43] 47
(d) Hydration number(λ)[44] 47
第四章結果與討論 48
4.1單體分析 48
4.1.1單體DSC分析 48
4.1.2單體TGA熱裂解溫度分析(Td5%) 50
4.2高分子DSC分析 52
4.2.1高分子TGA熱裂解溫度(Td5%) 54
4.3磺酸化高分子之吸水率分析及HYDRATION NUMBER(Λ) 56
4.4磺酸化高分子分析 61
4.4.1磺酸化高分子熱裂解溫度(Td5%)之分析 61
4.5質子導電度(PROTON CONDUCTIVITY) 65
4.6光散射分析 67
第五章結論 70
參考文獻 71
附錄 75
參考文獻 References
[1]. 台灣燃料電池資訊網, http://www.tfci.org.tw/. (2011)
[2]. L.Wang, B.L. Yi, H.M. Zhang, and D.M. Xing, J. Phys. Chem. B, 2008, 112, 4270.
[3]. O. Savadogo, J.Power Sources, 2004, 127, 135-161.
[4]. 吳滄琪, “磺酸化高分子於燃料電池質子交換膜製備之應用”,元智大學化工系(2003).
[5]. 鄭耀宗,徐耀昇, “燃料電池技術進展的現況”,燃料電池論文集,15-27(1989).
[6]. 鄭煜騰、萬瑞霙、林修正, “酸性燃料電池的製成研究”,能源季刊,第二十五卷第四期,161 (1995).
[7]. O. Stonehart, J. Apl. Electrochem.,1992, 22, 995.
[8]. 李國霖, “熔融碳酸鹽燃料電池的研發”,能源季刊,第二十四卷第四期,57 (1997).
[9]. 蔡春恩,"二次交連改質聚乙烯為直接甲醇燃料電池質子傳導膜之研究",台灣科技大學化工系(2011)
[10]. P. Gouerec, M. C. Denis, D. Guay, J. P. Dodelet, R. Schulz, J. Electrochem. Soc., 2000, 147, 3989.
[11]. (a)H. Y. Jung, K. Y. Cho, K. A. Sung, W. K. Kim, J. K. Park, J.Power Sources, 2006, 163, 56; (b)H. Y. Jung, K. Y. Cho, K. A. Sung, W. K. Kim, M. Kurkuri, J. K. Park, Electrochim.Acta, 2007, 52, 4916.
[12]. C. H. Park, C. H. Lee, M. D. Guiver, Y. M. Lee, Progress in Polymer Science, 2011, 36, 1443.
[13]. http://www.itm-power.com/cmsFiles/investors/Tradition_FuelCellReport_Apr2010.pdf
[14]. S. Kaliaguine, S. D. Mikhailenko, K. P. Wang, P. Xing, G. Robertson, M. D. Guiver, Catal. Today, 2003, 82, 213.
[15]. S.M. Zaidi, S.D. Mikhailenko, G.P. Robertson, M.D. Guiver, S. Kaliaguine J. Membrane Sci., 2000, 173, 17.
[16]. S. D. Mikhailenko, S. M. Zaidi, S. Kaliaguine, Catal. Today, 2001, 67, 225-236.
[17]. M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R.Einsla, J. E. McGrath, Chem. Rev., 2004, 104, 4587.
[18]. M. Kenji, A. S. Hay, J. Polym. Sci. Part A: Polym. Chem., 2001, 39, 3211.
[19]. M. Kenji, O. Kenichi, T. Eishun, and A. S. Hay, Macromolecules, 2001, 34, 2065.
[20]. M. Sumiko, R. H. Antisar, L. Catherine, G. Julie, G. Daniel, and S. H. Allan, Macromolecules 2008, 41, 277.
[21]. S. Matsumura, A. R. Hlil, C. Lepiller, J. Gaudet, D. Guay, Z. Shi, S. Holdcroft, and S. H. Allan, Macromolecules, 2008, 41, 281.
[22]. M. Sumiko, H. Antisar, D. Naiying, L. Catherine, G. Julie, G. Daniel, S. Zhiqing, S. Holdcroft, S. H. Allan, J. Polym. Sci. Part A: Polym. Chem., 2008, 46, 3860.
[23]. S. Matsumura, A. R. Hlil, A. S. Hay, J Polym Sci, Part A: Polym Chem., 2008, 46, 6365.
[24]. M. Sumiko, R. H. Antisar, M. A. K. Al-Souz, G. Julie, G. Daniel, S. H. Allan, J. Polym. Sci. Part A: Polym. Chem., 2009, 47, 5461.
[25]. T. Shuanghong, M. Yuezhong, S. H. Alan, Macromolecules, 2009, 42, 1153.
[26]. T. Shuanghong, M. Yuezhong, S. H. Allan, J. Polym. Sci. Part A: Polym. Chem., 2009, 47, 4762.
[27]. D. Chen, S. Wang, M. Xiao, Y. Meng A. S. Hay, J. Mater. Chem., 2011, 21, 12068.
[28]. K. Matsumoto, T. Higashihara, and M. Ueda, polymer, 2009, 50, 5341.
[29]. L. He, C. H. Fujimoto, C. J. Cornelius, D. Perahia,, Macromolecules, 2009 , 42, 7084.
[30]. R. J. Stanis, M. A. Yaklin, C. J. Cornelius, T. Takatera, A. Umemoto, A. Ambrosini, C. H. Fujimoto, Journal of Power Sources, 2010 ,195, 104.
[31]. M. Gerhard, M, Jochen, Advances in Polymer Science, 2008, 216, 1
[32]. C. H. Fujimoto, M. A. Hickner, C. J. Cornelius,Macromolecules, 2005, 38, 5010.
[33]. K. Miyatake, B. Bae, M.Watanabe, Polym. Chem., 2011, 2, 1919.
[34]. 范鐸正,新式盤狀液晶結合聚丙烯醯胺材料開發與光電特性研究及其有機太陽能電池之應用,國立中山大學碩士論文. (2007)
[35]. 蔡春恩,二次交聯改質聚乙烯醇為直接甲醇燃料電池質子傳導膜之研究,台灣科技大學博士論文.(2011)
[36]. 史世華,基質輔助雷射脫附游離—飛行時間質譜技術及其應用,科學新知,88.6:70~80。
[37]. M. Michau and M. Barboiu., J. Mater., 2009, 19, 6124.
[38]. W. Schartl, Light Scattering from Polymer Solutions and Nanoparticle Dispersions, 2006, Germany.
[39]. N. C. Foster, Ph. D., P. E., Chemithon,1997.
[40]. W. A. Thaler, Macromolecules, 1983, 16, 623.
[41]. Y. C. Yen, Y. S. Ye, C. C. Cheng, Polymer, 2010, 51, 84.
[42]. Y. S. Ye, Y. C. Yen, C. C. Cheng, W. Y. Chen, L. T. Tsai, F. C. Chang, Polymer, 2009, 50, 3196.
[43]. P. N. Pintauro, H. Yang, United States Patent. (2002)
[44]. T. E. Springer, T. A. Zawodzinski, and S. GottesfeldJ. Electrochem. Soc., 1991,138, 2334.
[45]. 何基任,應用於質子交換膜之磺酸化聚芳香醚高分子,國立中山大學碩士論文 (2011)
[46]. S. P. Tung and B. J. Hwang, J. Membr. Sci., 2004 , 241, 315.
[47]. M. A. Hickner and B. S. Pivovar, Fuel Cells, 2005, 5, 213.
[48]. A. Guinier and G. Fournet, Wiley Interscience, 1955, NewYork.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.47.253
論文開放下載的時間是 校外不公開

Your IP address is 3.145.47.253
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code