Responsive image
博碩士論文 etd-0721112-173806 詳細資訊
Title page for etd-0721112-173806
論文名稱
Title
利用密度泛函理論探討氫分子在極細鈀奈米線上的吸附、解離與擴散行為
Adsorption, dissociation and diffusion behaviors of hydrogen molecule on ultrathin Pd nanowires : the density functional theory study
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
97
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-29
繳交日期
Date of Submission
2012-07-21
關鍵字
Keywords
分子動力學、密度泛函理論、氫分子、Pd奈米線、吸附、解離、擴散
density functional theory, molecular dynamics, Pd nanowire, hydrogen molecule, adsorption, dissociation, diffusion
統計
Statistics
本論文已被瀏覽 5711 次,被下載 438
The thesis/dissertation has been browsed 5711 times, has been downloaded 438 times.
中文摘要
本論文利用basin-hopping (BH)方法搭配tight-binding(TB)勢能預測出極細鈀奈米線(Pd nanowire)之穩定結構,再利用密度泛函理論(DFT)與密度泛函理論-分子動力學(DFT-MD)探討Pd奈米線之熱穩定性以及對氫氣分子之吸附、解離與擴散之行為。在熱穩定性方面,極細奈米線在溫度400K時其結構依舊穩定存在。接著再計算氫原子與氫分子在奈米線表面不同吸附點之結構與吸附能。之後利用NEB方法去求得氫分子解離以及氫原子擴散反應的最小能量路徑與過渡態。由氫分子解離結果顯示了,其只需要克服非常小的能障就能於低溫發生解離,這與Pd 塊材(bulk)材料的催化性質非常相似。最後利用DFT-MD觀察氫原子在Pd奈米線之熱穩定性,結果顯示了氫原子只能在遠低於室溫(298K)下才能存在於奈米線內部。這現象與其它Pd bulk與Pd奈米材料氫容易存在內部而導致氫脆的現象不同。因本研究將探討此不只具有優越的催化性質,且又能夠預防氫脆現象發生的極細Pd奈米線材料。
Abstract
In this study, the structures of two ultrathin Pd nanowires were predicted by the simulated annealing basin-hopping method (SABH) with the tight-binding potential. The thermal stability of the Pd wires and adsorption, dissociation and diffusion behaviors were further examined by the density functional theory (DFT) calculation and DFT molecular dynamics (DFT-MD) simulation. In terms of thermal stability, these two Pd nanowires are still very stable at temperatures as high as 400 K. The configurations and adsorption energy have been calculated for H atom and H2 molecular adsorption on Pd nanowires. The minimum energy pathways and transition states of H2 molecular dissociation and H atom diffusion process on Pd nanowires were studied by the nudged elastic band (NEB) method. For the dissociation of hydrogen molecules, results show the dissociation is almost barrierless so the dissociation is easy to occur at very low temperatures, and their catalytic reactivity is very similar to the Pd bulk material. The thermal stability of the H atom within these Pd nanowires were also investigated by DFT-MD, with results showing that the H atom can only stay within Pd nanowires at temperatures much lower than room temperature (298 K). This phenomenon is very different from that of H atoms within Pd bulk material or other reported nanomaterials, leading to hydrogen embrittlement. Our results reveal that these two ultrathin Pd nanowires not only possess the same excellent catalytic activity for hydrogen molecules as the bulk Pd materials or other Pd nanomaterials do, but also avoid the hydrogen embrittlement occur.
目次 Table of Contents
中文摘要……………………………………………………………………………I
英文摘要……………………………………………………………………………II
目錄…………………………………………………………………………………III
圖次……………………………………………………………………………………V
表次……………………………………………………………………………VIII
第一章 緒論 .. 1
1.1 研究目的與動機 1
1.2 鈀奈米線文獻回顧 3
1.3 本文架構 9
第二章 模擬方法及理論介紹 10
2.1 分子靜力學理論 10
2.1.1 Basin-hopping計算法 10
2.1.2 勢能函數 11
2.2 密度泛函理論 ….13
2.2.1 多粒子系統薛丁格方程式 13
2.2.2 Born-Oppenheimer絕熱近似 14
2.2.3 Hohenberg-Kohn 理論 14
2.2.4 Kohn-Sham equation 16
2.2.5 交換相關能之近似-(LDA、GGA) 17
2.2.6 VASP介紹 19
2.3 密度泛函理論-分子動力學(DFT-MD) 20
2.3.1 運動方程式 20
2.3.2 積分法則 21
2.3.3 時間步階選取 22
2.3.4 系綜(Ensemble) 23
2.3.5 Nose-Hoover方法 23
2.4 分析方法 25
2.4.1 吸附能(Adsorption Energy) 25
2.4.2 Nudged elastic band (NEB)方法 26
2.4.3 鍵長變化量統計 28
第三章 結果與討論 29
3.1 鈀奈米線幾何結構與熱穩定性質分析 29
3.1.1 物理模型之建構 29
3.1.2 鈀奈米線之熱穩定性質 34
3.2 氫原子與氫分子吸附在Pd奈米線之研究 40
3.2.1 氫原子與氫分子吸附於Pd奈米線表面之模型 40
3.2.2 氫原子在鈀奈米線之吸附性質探討 42
3.2.3 氫分子在鈀奈米線之吸附性質探討 46
3.3 氫氣在鈀奈米線上之解離性質研究 53
3.4 氫在鈀奈米線上之擴散性質研究 58
3.4.1 氫在鈀奈米線表面擴散性質 58
3.4.2 氫在鈀奈米線界面擴散性質 62
3.4.3 氫在鈀奈米線內部擴散性質 66
3.4.4 氫在鈀奈米線內部之熱穩定性質 70
第四章 結論與建議 74
4.1 結論 74
4.2 建議與未來展望 76
參考文獻 77
參考文獻 References
參考文獻
[1]. M. Z. Jacobson, W. G. Colella, D. M. Golden, "Cleaning the Air and Improving Health with Hydrogen Fuel-Cell Vehicles", Science, Vol. 308, p. 1901-1905, 2005.
[2]. Adams Brian D, Chen Aicheng , "The role of palladium in a hydrogen economy", Materials Today, Vol. 14, p. 282-289, 2011.
[3]. F. A. Lewis , "The Palladium Hydrogen System", New York: Academic, 1976.
[4]. 江元生, "結構化學", 五南圖書出版, 1998: p. 81.
[5]. M. Haruta, T. Kobayashi, H. Sano and N. Yamada, "Novel gold catalysts for the oxidation of carbon-monoxide at a temperature far below 0-degrees-c", Chemistry Letters, Vol. 16, p. 405-408, 1987.
[6]. T.B. Flanagan, W.A. Oates, "The palladium hydrogen system", Annual Review of Materials Science, Vol. 21, p. 269-304, 1991.
[7]. T Kiefer, F Favier , O Vazquez-Mena, G Villanueva, J Brugger, "A single nanotrench in a palladium microwire for hydrogen detection", Nanotechnology, Vol. 19, p. 125502(1)-125502(8) ,2008.
[8]. Fan Yang, Sheng-Chin Kung, Ming Cheng, John C. Hemminger , Reginald M. Penner, "Smaller is Faster and More Sensitive: The Effect of Wire Size on the Detection of Hydrogen by Single Palladium Nanowires", ACS Nano, Vol. 4, p. 5233–5244,2010.
[9]. Christoph Langhammer, Igor Zoric, Bengt Kasemo, Bruce M. Clemens, "Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme", Nano Letters, Vol. 7, p. 3122-3127, 2007.
[11]. T. Mitsui, M.K. Rosea, E. Fomina, D.F. Ogletree , M. Salmeron , "Hydrogen adsorption and diffusion on Pd(1 1 1) ",Surface science, Vol. 540, p. 5-11, 2003.
[12]. X. Q. Zeng,M. L. Latimer,Z. L. Xiao,,S. Panuganti,U. Welp,W. K. Kwok,and T. Xu, "Hydrogen Gas Sensing with Networks of Ultrasmall Palladium Nanowires Formed on Filtration Membranes", Nano Letters, Vol. 11, p. 262-268, 2011.
[13]. Tomoko Matsuda, Tokushi Kizuka, "Structure of Nanometer - Sized Palladium Contacts and Their Mechanical and Electrical Properties", Japanese Journal of Applied Physics, Vol. 46, p. 4370–4374, 2007.
[14]. Han-Pu Liang, Nathan S. Lawrence, Li-Jun Wan, Li Jiang,Wei-Guo Song, Timothy G. J. Jones, "Controllable Synthesis of Hollow Hierarchical Palladium Nanostructures with Enhanced Activity for Proton/Hydrogen Sensing", The Journal of Physical Chemistry C, Vol. 112, p. 338-344, 2008.
[15]. Toshiro Kuji, Yoshihito Matsumura, Hirohisa Uchida, Tatsuhiko Aizawa, "Hydrogen absorption of nanocrystalline palladium", Journal of Alloys and Compounds, Vol. 330, p. 718–722, 2002.
[16]. D.G. Narehood, S. Kishore, H. Goto, J.H. Adair, J.A. Nelson, H.R. Gutierrez, P.C. Eklund, "X-ray diffraction and H-storage in ultra-small palladium particles", International Journal of Hydrogen Energy, Vol. 34, p. 952-960, 2009.
[17]. Eunsongyi Lee, Jun Min Lee, Ja Hoon Koo, Wooyoung Lee, Taeyoon Lee, "Hysteresis behavior of electrical resistance in Pd thin films during the process of absorption and desorption of hydrogen gas", International journal of hydrogen energy, Vol. 35, p. 6984-6991, 2010.
[18]. Kye Jin Jeon, Minhong Jeun, Eunsongyi Lee, JunMin Lee,Kyoung-Il Lee, Paul von Allmen, Woo young Lee, "Finite size effect on hydrogen gas sensing performance in single Pd nanowires", Nanotechnology, Vol. 19, p. 495501-495506, 2008.
[19]. Tomoko Matsuda, Tokushi Kizuka, "Structure of Nanometer-Sized Palladium Contacts and Their Mechanical and Electrical Properties", Japanese Journal of Applied Physics, Vol.45, p. L1337–L1339, 2006.
[20]. David J. Wales, Jonathan P. K. Doye, "Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms", The Journal of Physical Chemistry A, Vol. 101, p. 5111–5116, 1997.
[21]. M. Ziauddin, G. Veser and L.D. Schmidt, "Ignition-extinction of ethane-air mixtures over noble metals", Catalysis Letters, Vol. 46, p. 159-167, 1997.
[22]. B.L.M. Hendriksen, S.C. Bobaru, J.W.M. Frenken, "Oscillatory CO oxidation on Pd(1 0 0) studied with in situ scanning tunneling microscopy", Surface Science, Vol. 552, p. 229–242,2004.
[22]. Mingshi Jin, Jung-Nam Park, Jeong Kuk Shon, Jin Hoe Kima, Zhenghua Li,Young-Kwon Park, Ji Man Kim, "Low temperature CO oxidation over Pd catalysts supported on highly ordered mesoporous metal oxides", Catalysis Today, Vol. 185, p. 183–190, 2012.
[23]. Tamejiro Hiyama, Yasuo Ha tanaka, "Palladium-catalyzed cross-coupling reaction of organometalloids through activation with fluoride ion", Pure and Applied Chemistry, Vol. 66, p. 1471-1478, 1994.
[24]. Manfred T. Reetz and Johannes G. de Vries, "Ligand-free Heck reactions using low Pd-loading", Chemical Communications, Vol. 14, p. 1559-1563, 2004.
[25]. Seung Uk Son, Youngjin Jang, Jongnam Park, Hyon Bin Na, Hyun Min Park, Hyung Joong Yun, Jouhahn Lee, and Taeghwan Hyeon, "Designed Synthesis of Atom-Economical Pd/Ni Bimetallic Nanoparticle-Based Catalysts for Sonogashira Coupling Reactions", Journal of the American Chemical Society, Vol. 126, p. 5026–5027, 2004.
[26]. William J. Buttner, Matthew B. Post, Robert Burgess, Carl Rivkin, "An overview of hydrogen safety sensors and requirements", International Journal of Hydrogen Energy, Vol. 36, p. 2462-2470, 2011.
[27]. Frederic Favier, Erich C. Walter, Michael P. Zach,Thorsten Benter, Reginald M. Penner, "Hydrogen sensors and switches from electrodeposited palladium mesowire arrays", Science, Vol. 293, p. 2227-2231, 2001.
[28]. La Ferrara, Vera, Alfano, Brigida, Massera, Ettore, Di Francia, Girolamo, "Single Palladium Nanowire Growth in Place Assisted by Dielectrophoresis and Focused Ion Beam", Journal of Nanoscience and Nanotechnology, Vol. 9, p. 2931-2936, 2009.
[29]. Nevin Tasaltm , Sadullah Ozturk, Necmettin Kilinc,Hayrettin Yuzer, Zafer Ziya Ozturk , "Fabrication of vertically aligned Pd nanowire array in AAO template by electro deposition using neutral electrolyte", Nanoscale Res Lett, Vol. 5, p. 1137–1143, 2010.
[30]. Kyung-Bok Lee, Sang-Min Lee, and Jinwoo Cheon, "Size-Controlled Synthesis of Pd Nanowires Using a Mesoporous Silica Template via Chemical Vapor Infiltration", Advanced Materials, , Vol. 13, p. 517-520 2001.
[31]. Kim, K., M. Kim, and S.M. Cho, "Pulsed electrodeposition of palladium nanowire arrays using AAO template", Materials Chemistry and Physics. Vol. 96, p. 278-282, 2006.
[32]. Kartopu, G., S. Habouti, and M. Es-Souni, "Synthesis of palladium nanowire arrays with controlled diameter and length", Materials Chemistry and Physics, Vol. 107, p. 226-230, 2008.
[33]. Lichun Liu,Sang-Hoon Yoo,Sang A. Lee, Sungho Park, "Wet-Chemical Synthesis of Palladium Nanosprings", Nano letter, Vol.11, p. 3979-3982, 2011.
[34]. Shufang Yu, Ulrich Welp, Leonard Z. Hua, Andreas Rydh, Wai K. Kwok, H. Hau Wang, "Fabrication of Palladium Nanotubes and Their Application in Hydrogen Sensing", Chemistry of Materials, Vol. 17, p. 3445–3450, 2005.
[35]. P. Offermans, H. D. Tong, C. J. M. van Rijn, P. Merken, S. H. Brongersma, M. Crego-Calama, "Ultralow-power hydrogen sensing with single palladium nanowires", Applied Physics Letters, Vol. 94, p. 223110(1)-223110(3) , 2009.
[36]. Fan Yang,Dongoh Jung,Reginald M. Penner, "Trace Detection of Dissolved Hydrogen Gas in Oil Using a Palladium Nanowire Array", Analytical Chemistry, Vol. 83, p. 9472-9477, 2011.
[37]. C.W. Xu, H. Wang, P.K. Shen, S.P. Jiang, "Highly ordered Pd nanowire arrays as effective electrocatalysts for ethanol oxidation in direct alcohol fuel cells", Advanced Materials, Vol. 19, p. 4256-4259, 2007.
[38]. Mahima Subhramannia,Kannan Ramaiyan, Mohammed Aslam, Vijayamohanan K. Pillai, "Y-junction nanostructures of palladium: Enhance delectro catalytic properties for fuel cell reactions", Journal of Electro analytical Chemistry, Vol. 627, p. 58-62, 2009.
[39]. Jiajun Wang, Yougui Chen, Hao Liu, Ruying Li, Xueliang Sun, "Synthesis of Pd nanowire networks by asimple template-free and surfactant-free method and their application in formic acid electro oxidation", Electrochemistry Communications,Vol. 12, p. 219-222, 2010.
[40]. Caihong Feng, Rui Zhang, Penggang Yin, Lidong Li, Lin Guo, Zhigang Shen, "Direct solution synthesis of Pd nanowire networks and their application in surface-enhanced Raman scattering", Nanotechnology, Vol. 19, p. 305601(1)- 305601(8) , 2008.
[41]. Li Hui, B. L. Wang, J. L. Wang, G. H. Wang, "Local atomic structures of palladium nanowire", The Journal of Chemical Physics, Vol. 121, p. 8890-8896, 2004.
[42]. Ling Miao, Venkat R. Bhethanabotla, and Babu Joseph, "Melting of Pd clusters and nanowires: A comparison study using molecular dynamics simulation", Physical Review B, Vol. 72, p. 134109(1)-134109(12) , 2005.
[43]. Delin, A., E. Tosatti, and R. Weht, "Magnetism in atomic-size palladium contacts and nanowires", Physical Review Letters, Vol. 92, p. 057201(1)-057201(4) , 2004.
[44]. D. A. Stewart, "Magnetism in coaxial palladium nanowires", Journal of applied physics, 2007, 101, 09D503(1)-09D503(3).
[45]. Zhen Zhao, Barry D. Dunietz, "Ab initio study of charge transport of hydrogen functionalized palladium wires", The Journal of Chemical Physics, Vol. 129, p. 024702(1)-024702(7) , 2008.
[46]. B Pieczyrak, C Gonzalez , P Jelinek, R Perez, J Ortega, F Flores, "Mechanical and electrical properties of stretched clean and H-contaminated Pd-nanowires", Nanotechnology, Vol. 19, p. 335711(1)-335711(8) , 2008.
[47]. Sz. Csonka, A. Halbritter,G. Mihaly,Sz. Csonka, A. Halbritter, G. Mihaly, "Conductance of Pd-H Nanojunctions", Physical Review Letters, Vol. 93, p. 016802(1)-016802(4) , 2004.
[48]. Yukihito Kondo and Kunio Takayanagi , "Synthesis and Characterization of Helical Multi-Shell Gold Nanowires", Science, Vol. 289, p. 606-608, 2000.
[49]. 林根凰,以分子動力學與密度泛函理論研究鎢奈米微粒之結構分析與電子性質,國立中山大學機械與機電工程學系研究所碩士論文,2010.
[50]. Shin-Pon Ju, Ken-Huang Lin, Kuan-Fu Lin, "Electronic and Structural Properties of Ultrathin SiO2 Nanowires", The Journal of Physical Chemistry C, Vol. 116, p. 3918–3927, 2012.
[51]. Byrd, R.H., Lu, P.H., Nocedal, J., Zhu, C.Y., "A limited memory algorithm for bound constrained optimization", SIAM J. Sci. Comput, Vol. 16, p. 1190–1208, 1995.
[52]. G. N. Vanderplaats, "Numerical Optimization Techniques for Engineering Design: With Applications", McGraw-Hill Book Company, 1984.
[53]. Fabrizio Cleri and Vittorio Rosato, "Tight-binding potentials for transition metals and alloys", Physical Review B, Vol. 48, p. 22-33, 1993.
[54]. D. R. Hartree, "The Wave Mechanics of an Atom with a Non-Coulomb Central Field", Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 24, p. 89-110, 1928.
[55]. M. Born, R. Oppenheimer, "Zur Quantentheorie der Molekeln", Annalen der Physik, Vol. 389, p. 457-484, 1927.
[56]. Hohenberg, P., W. Kohn., "Inhomogeneous electron gas", Physical Review, Vol. 136, p. B864–B871, 1964.
[57]. W. Kohn, L. J. Sham, "Self-consistent equations including exchange and correlation effects", Physical Review, Vol. 140, p. A1133-A1138, 1965.
[58]. Ceperley, D.M., B.J. Alder, "Ground State of the Electron Gas by a Stochastic Method", Physical Review Letters, Vol. 45, p. 566-569, 1980.
[59]. Behari J., "Use of a model pseudopotential in the calculation of some eletronic properties of lead (solid and liquid states) ", Journal of Physics F: Metal Physics, Vol. 3, p. 1553-1557, 1973.
[60]. R.O. Jones and O. Gunnarsson, "The density functional formalism, its applications and prospects ", Reviews of Modern Physics, Vol. 61, p. 689–746,1989.
[61]. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, "Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation", Physical Review B, Vol. 46, p. 6671-6687,1992.
[62]. J. P. Perdew, K. Burke, and M. Ernzerh, " Generalized Gradient Approximation Made Simple", Physical Review Letters, Vol. 77, p. 3865-3868, 1996.
[63]. B. Hammer, L. B. Hansen, and J. K. Norskov, "Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals ", Physical Review B, Vol. 59, p. 7413–7421, 1999.
[64]. A. D. Becke., "Density-functional exchange-energy approximation with correct asymptotic behavior ", Physical Review A, Vol. 38, p. 3098-3100, 1988.
[65]. Kresse, G., and J. Hafner., "Ab initio molecular-dynamics for liquid-metals", Physical Review B, Vol. 47, p. 558–561, 1993.
[66]. Kresse, G., and J. Hafner., "Ab initio molecular-dynamics simulation of theliquid-metal amorphous-semiconductor transition in germanium", Physical Review B, Vol. 49, p. 14251-14269, 1994.
[67]. Kresse, G., and J. Furthmuller., "Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set", Computational Materials Science, Vol. 6, p. 15–50, 1996.
[68]. S.W. Rick and S.J. Stuart, "Potentials and algorithms for incorporating polarizability in computer simulations", REVIEWS IN COMPUTATIONAL CHEMISTRY, Vol. 18, p. 89-146, 2002.
[69]. D. Frenkel and B. Smit, "Understanding Molecular Simulation from Algorithms to Applications", Academic, New York, 2002.
[70]. A. R. Leach, "Molecular Modelling: Principles and Applications", Longman 1996.
[71]. Shuichi Nose, "A unified formulation of the constant temperature molecular dynamics methods", Journal of Chemical Physics, Vol. 81, p. 511-519, 1984.
[72]. William G. Hoover, "Canonical dynamics: Equilibrium phase–space distributions", Physical Review A, Vol. 31, p. 1695-1697, 1985.
[73]. Alexander Ulitsky and Ron Elber, "A new technique to calculate steepest descent paths in flexible polyatomic systems", Journal of Chemical Physics, Vol. 92, p. 1510-1511,1990.
[74]. Graeme Henkelman, Blas P. Uberuaga, Hannes Jonsson, "A climbing image nudged elastic band method for finding saddle points and minimum energy paths" , Journal of Chemical Physics, Vol. 113, p. 9901-9904,2000.
[75]. G. Mills and H. Jonsson, " Quantum and thermal effects in H2 dissociative adsorption: Evaluation of free energy barriers in multidimensional quantum systems", Physical Review Letters , Vol. 72, p. 1124–1127,1994.
[76]. M. Pozzo and D. Alfe, "Hydrogen dissociation on Mg(0001) studied via quantum Monte Carlo calculations", Physical Review B, Vol. 78, p. 245313(1)–245313(5) , 2008.
[77]. M. Villarba and H. Jonsson, "Atomic exchange processes in sputter deposition of Pt on Pt(111) ", Surface Science, Vol. 324, p. 35–46, 1995.
[78]. Worthing, A.G., "Atomic Heats of Tungsten and of Carbon at Incandescent Temperatures", Physical Review, Vol. 12, p. 199-225, 1918.
[79]. K.P, G.H., "Molecular spectra and molecular structure: IV: Constants of diatomic molecules", Huber Van Nostrand Reihold, 1979.
[80]. H.J. Monk horst, J.D. Pack, "Special points for Brillouin-zone integrations", Physical Review B , Vol. 13 , p. 5188-5192, 1976.
[81]. W. Kohn, A. D. Becke,and R. G. Parr, "Density Functional Theory of Electronic Structure", The Journal of Physical Chemistry, Vol. 100, p. 12974-12980, 1996.
[82]. G Lanzara, Y Yoon, H Liu, S Peng, W-I Lee, "Carbon nanotube reservoirs for self-healing materials", Nanotechnology, Vol. 20, p. 335704 (1)-335704 (7) , 2009.
[83]. K.H. Rieder, W. Stocker, "Hydrogen chemisorption on Pd(100) studied with he scattering", Surface Science, Vol. 148, p. 139-147, 1984.
[84]. R.J. Behm, K. Christmann, G. Ertl, "Adsorption of hydrogen on Pd(100) ", Surface Science, Vol. 99, p. 320-340, 1980.
[85]. J.-P. Muscat, "The binding of hydrogen to a Pd(111) surface", Surface Science, Vol. 48, p. 237-251,1984.
[86]. Herve Jobic, Jean-Pierre Candy, Vincent Perrichon and Albert Renouprez, "Neutron-scattering and volumetric study of hydrogen adsorbed and absorbed on Raney palladium ", Journal of the Chemical Society, Faraday Transactions, Vol. 81, p. 1955-1961, 1985.
[87]. I. Papai, D.R. Salahub, C. Mijoule, "An LCGTO-MCP-LSD study of the (2 × 1) H-covered Pd(110) surface", Surface Science, Vol. 236, p.241-249,1990.
[88]. H. Conrad, G. Ertl, E.E. Latta, "Adsorption of hydrogen on palladium single crystal surfaces", Surface Science, Vol. 41, p. 435-446, 1974.
[89]. M. Skottke, R. J. Behm, G. Ertl, V. Penka, and W. Moritz , "LEED structure analysis of the clean and (2×1)H covered Pd(110) surface", Surface Science, Vol. 87, p. 6191-6198, 1987.
[90]. Ruibin Jiang, Wenyue Guo, Ming Li,a Xiaoqing Lu, Jianye Yuan, Hong Shan, "Dehydrogenation of methanol on Pd(100): comparison with the results of Pd(111) ", Physical Chemistry Chemical Physics, Vol. 12, p. 7794-7803, 2010.
[91]. Zhang JS, Zhang WX, Wang ZX, "Adsorption and Diffusion of Hydrogen Atom on Pd Low Index Surfaces", ACTA PHYSICO-CHIMICA SINICA,Vol. 12,p. 773-779, 1996.
[92]. G.W.C. Kaye, T.H. Laby, "Physical and Chemical Constants", Harlow Longman, 16th edition, p. 273 , 1995.
[93]. Sampyo Hong and Talat S. Rahman, "Adsorption and diffusion of hydrogen on Pd(211) and Pd(111): Results from first-principles electronic structure calculations", Physical Review B, Vol. 75, p.155405(10)- 155405(10) , 2007.
[94]. Sakamoto, Y.; Takai, K.; Takashima, I.; Imada, M., "Electrical Resistance Measurements as a Function of Composition of Palladium_Hydrogen (Deuterium) Systems by a Gas Phase Method", Journal of Physics: Condensed Matter, Vol. 8, p. 3399–3411 , 1996.
[95]. Mutschele , R. Kirchheim, "Hydrogen as a probe for the average thickness of grain boundary", Scripta Metallrgica, Vol. 21, p.1101-1104, 1987.
[96]. Fukai Y., "The metal-hydrogen system – basic bulk properties", Springer Verlag Berlin, p. 31-32, 1993.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code