Responsive image
博碩士論文 etd-0721113-191322 詳細資訊
Title page for etd-0721113-191322
論文名稱
Title
含積體化氯化銀參考電極之二氧化碳微型氣體感測器開發
Development of a Carbon Dioxide Micro Gas Sensor with Integrated AgCl Reference Electrode
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
105
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-27
繳交日期
Date of Submission
2013-08-22
關鍵字
Keywords
氯化鉀洋菜膠、固態電解質薄膜、微型參考電極、延伸式閘極場效電晶體、氣體滲透薄膜
micro reference electrode, KCl-gel, gas-permeable membrane, extended gate field effect transistor, solid electrolyte membrane
統計
Statistics
本論文已被瀏覽 5736 次,被下載 0
The thesis/dissertation has been browsed 5736 times, has been downloaded 0 times.
中文摘要
近年來隨著工業高度發展,二氧化碳的高排放量除了造成空氣汙染以及溫室效應外,亦導致水質酸化及養殖漁業魚苗存活率下降等問題,因此開發一種高品質之感測系統以即時檢測水中二氧化碳濃度是一個非常重要之研究課題。目前市面上傳統量測水中之氣體感測器在量測時因必頇伴隨商用參考電極(長為 10 cm,直徑為 3 mm 且價格約為4000元),故具有體積龐大、價格昂貴以及無法即時監控等缺點,因此本論文致力於開發一種可以整合微型固態參考電極之二氧化碳微型感測器,以有效改善上述三種缺點。
首先,本論文利用微機電系統技術開發微型參考電極晶片,該晶片包含電極晶片與封裝晶片兩部分。電極晶片是在矽晶片上沉積鈦/銀金屬薄膜,再利用電化學方式將銀氯化而形成氯化銀薄膜,進而完成銀/氯化銀微型準參考電極晶片之製作;至於封裝晶片則設計有兩個不同尺寸之微矽蝕刻腔體結構,其中一個矽腔體用以填充氯化鉀洋菜膠以作為準參考電極之鹽橋,另一個矽腔體則提供導線與電極晶片之連接通道。本論文利用一般半導體製程設計製作延伸式閘極場效電晶體(Extended Gate Field Effect Transistor, EGFET),並結合氣體滲透薄膜與固態電解質薄膜製備開發具有高感測靈敏度、元件體積小、低製造成本之二氧化碳微型感測器,相關製程步驟總共包含六道黃光微影製程及九道薄膜沉積。最後,本研究中將探討分析微型參考電極注膠面積尺寸、電晶體之通道寬長比對二氧化碳微型感測器之特性影響,進而獲得最佳特性表現之元件尺寸設計。
本論文所開發之微型參考電極尺寸為 9 mm×6 mm×0.5 mm,經量測結果證實其補償電位(Offset Voltage)在 30,000 秒測詴時間下呈現非常低且穩定之值(-3.0 mV)、以及可呈現與商用參考電極幾乎一樣穩定的 CV 曲線;而製作完成之EGFET 二氧化碳微型感測器(含微型參考電極晶片)之尺寸為 3 cm×2 cm×2 mm(感測區域之面積為 1 mm×1 mm),根據量測結果顯示,於 0.25~50 mM濃度量測範圍下,元件之感測靈敏度與線性度最高分別可達 44.4 mV/dec 與 98.37%,感測響應時間約為100 sec,以上三種特性表現皆比國際上其他研究還高,故可證明具積體化微型參考電極之 EGFET 二氧化碳微型感測器,具有體積小、性能佳及可即時監控之優點。
Abstract
  In recent years, high carbon dioxide emissions not only result in serious air pollution and greenhouse effect, but also cause water acidification and decrease the survival rate of fry in aquaculture. Therefore, to develop a high-quality sensing system for real-time detecting the concentration of carbon dioxide in water is a very important research topic. The conventional carbon dioxide detectors in water have caused the detection inconvenient because of their large dimension, high fabrication cost and without real-time monitoring function. To improve these disadvantages, this thesis aims to develop a carbon dioxide microsensor integrated with an all-solid-state micro reference electrode.
  This thesis utilizes micro electro mechanical systems (MEMS) technology to develop micro reference electrode including electrode chip and packaging chip. One wafer of this module is defined as electrode chip. It has titanium/silver membranes deposited on the silicon wafer and then chloridizes the silver membrane by using electrochemical method. So it is namely silver/silver chloride quasi-reference electrode. Another wafer is called as packaging chip and it has two bulk micromachined silicon cavities for filling potassium chloride agarose as a quasi-reference electrode salt bridge and another for external conductors connection. Next, the thesis implements an extended gate field effect transistor (EGFET) with gas permeable membrane and solid electrolyte membrane for development of a high sensitivity, small size and low cost carbon dioxide microsensor. The total main processing steps of the proposed microsensor includes six photolithography and nine thin-film deposition processes. In addition, the influences of the filling cavity size of micro reference electrode and the channel width/length ratio of EGFET on the sensing performances of presented microsensor are also investigated in this study.
  The chip size of the implemented micro reference electrode is 9 mm×6 mm×0.5 mm. It has a very low and stable offset voltage (-3.0 mV in 30,000 seconds). Furthermore, a CV curve of the packaged reference electrode is same stable with commercial reference electrode. Also, the chip size of the implemented carbon dioxide microsensor with micro reference electrode is 3 cm×2 cm×2 mm and the sensing area is 1 mm×1 mm. As the carbon dioxide concentration varies from 0.25 mM to 50 mM, a very high sensitivity (44.4 mV/dec) and sensing linearity (98.37%) of the proposed EGFET microsensor can be demonstrated. In addition, the response time of the presented carbon dioxide microsensor is only about 100 seconds. Therefore, this thesis proves a carbon dioxide micro gas sensor with integrated micro reference electrode has three advantages such as small dimension, low fabrication cost and real-time monitoring function.
目次 Table of Contents
誌謝............................................................................................................................... i
摘要................................................................................................................................ii
Abstract ........................................................................................................................ iv
目錄.............................................................................................................................. vi
圖目錄.......................................................................................................................... ix
表目錄....................................................................................................................... xiii
第 1 章 緒論................................................................................................................ 1
1-1 前言................................................................................................................... 1
1-2 研究動機........................................................................................................... 2
1-3 實驗方法及論文架構....................................................................................... 5
第 2 章 原理介紹........................................................................................................ 7
2-1 電化學簡介....................................................................................................... 7
2-1-1 電極反應.................................................................................................... 8
2-1-2 質量傳遞.................................................................................................... 9
2-2 交流阻抗分析................................................................................................... 9
2-2-1 電化學系統等效電路.............................................................................. 11
2-2-2 擴散阻抗.................................................................................................. 15
2-2-3 擬電路元件之電化學性質...................................................................... 17
2-3 循環伏安法..................................................................................................... 19
2-4 感測器種類..................................................................................................... 21
2-4-1 離子選擇電極.......................................................................................... 21
2-4-2 離子感測場效電晶體.............................................................................. 22
2-4-3 延伸式閘極感測場效電晶體.................................................................. 24
2-5 延伸式閘極感測場效電晶體原理介紹......................................................... 25
2-5-1 吸附鍵結模型............................................................................................ 26
2-5-2 延伸式閘極感測場效電晶體工作原理.................................................... 27
第 3 章 元件設計與製作.......................................................................................... 30
3-1 微型參考電極元件......................................................................................... 30
3-1-1 氯化銀電極晶片的設計與製作流程...................................................... 30
3-1-2 KCl-gel 封裝晶片的光罩設計 ................................................................ 35
3-1-3 KCl-gel 封裝晶片的製作流程 ................................................................ 36
3-1-4 微型參考電極之封裝與電性連接.......................................................... 42
3-2 延伸式閘極感測場效電晶體元件................................................................. 44
3-2-1 延伸式閘極場效電晶體結構與光罩佈局設計...................................... 44
3-2-2 延伸式閘極場效電晶體製程整合設計 .................................................. 47
3-2-3 詳細製程步驟與參數 .............................................................................. 48
3-3 固態電解質薄膜配製 ..................................................................................... 54
3-4 氣體滲透薄膜配製 ......................................................................................... 55
第 4 章 結果與討論.................................................................................................. 58
4-1 微型參考電極電化學分析............................................................................. 58
4-1-1 電位穩定度與補償電位.......................................................................... 58
4-1-2 交流阻抗分析.......................................................................................... 61
4-1-3 循環伏安曲線.......................................................................................... 63
4-2 延伸式閘極場效電晶體................................................................................. 71
4-2-1 延伸式閘極場效電晶體量測分析.......................................................... 72
4-3 二氧化碳微型感測器特性量測分析............................................................. 74
4-3-1 感測靈敏度與線性度分析...................................................................... 75
4-3-2 感測遲滯電壓分析.................................................................................. 80
第 5 章 結論與未來展望.......................................................................................... 83
5-1 結論................................................................................................................. 83
5-2 未來展望......................................................................................................... 84
參考文獻...................................................................................................................... 85
參考文獻 References
[1] D. P. Brezinski, “Kinetic static and stirring errors of liquid junction reference electrodes,” Analyst 108, 425-442 (1983).
[2] J.-Y. Chen, K. Iwama, K. J. Aoki and T. Nishiumi, “Self-dispersion of mercury droplets from saturated calomel electrodes into solutions, ” Int. J. Electrochem. Sci. 8, 7394-7400 (2013).
[3] J.-J. Xu, X.-L. Luo and H.-Y. Chen, “Analytical aspects of FET-based biosensors,” Front. Biosci. 10, 420-430 (2005).
[4] K. Shimada, M. Yano, K. Shibatani, Y. Komoto and M. Esashi, T.Matsuo, “Application of catheter-tip i.s.f.e.t. for continuous in-vivo measurement,” Med. Biol. Eng. Comput. 18, 741-745 (1980).
[5] H. Suzuki, T. Hirakawa, S. Sasaki and I. Karube, “Micromachined liquid-junction Ag/AgCl reference electrode,” Sens. Actuators B: Chem. 46, 146-154 (1998).
[6] R. L. Smith and D. C. Scott, “An integrated sensor for electrochemical measurements,” IEEE Trans. Biomed. Eng. 33, 83-90 (1986).
[7] I.-Y. Huang, R.-S. Huang and L.-H. Lo, “Improvement of integrated/Ag/AgCl thin-film electrodes by KCl-gel coating for ISFET applications,” Sens. Actuators B: Chem. 94, 53-64 (2003).
[8] International Energy Agency Key World Energy Statistics, 2012 edition.
[9] K. Ertekin, I. Klimanat, G. Neurauter and O. S. Wolfbis, “Characterization of a reservoir-type capillary optical microsensor for pCO2 measurements,” Talanta 59, 261-267 (2003).
[10] R. Ali, S. M. Saleh, R. J. Meier, H. A. Azab, I. I. Abdelgawad and O. S. Wolfbeis, “Upconverting nanoparticle based optical sensor for carbon dioxide,” Sens. Actuators B: Chem. 150, 126-131 (2010).
[11] C. R. Schroder and I. Klimant, “The influence of the lipophilic base in solid state optical pCO2 sensors,” Sens. Actuators B: Chem. 107, 572-579 (2005).
[12] H. Nafe, “Potentiometric solid-state CO2 sensor and the role of electronic conductivity of the electrolyte,” Sens. Actuators B: Chem. 105, 119-123 (2005).
[13] J.-H. Shin, H.-J. Lee, C.-Y. Kim, B.-K. Oh, K.-L. Rho, H. Nam and G.-S. Cha, “ISFET-based differential pCO2 sensors employing a low-resistance gas-permeable membrane,” Anal. Chem. 68, 3166-3172 (1996).
[14] J.-H. Shin, J.-S. Lee, S.-H. Choi, D.-W. Lee, H. Nam and G.-S. Cha, “A planar pCO2 sensor with enhanced electrochemical properties,” Anal. Chem. 72, 4468-4473 (2000).
[15] M. Waleed Shinwari, D. Zhitomirsky, I. A. Deen , P. R. Selvaganapathy, M. Jamal Deen and D. Landheer, “Microfabricated reference electrodes and their biosensing applications,” Sens. 10, 1679-1715 (2010).
[16] 吳浩青、李永舫,「電化學動力學」,科技圖書,2001。
[17] 格里弟著,鮮祺振譯,「電極動力學」,徐氏基金會出版,1996。
[18] 高潁、鄔冰,「電化學基礎」,化學工業出版社,2004。
[19] A. J. Bard, L. R. Faulkner, “Electrochemical methods fundamentals and applications”, John Wiley & Sons, Inc., New York, 2001.
[20] J. G. Webster, “Electrical impedance tomography,” Adam Hilger, 1990.
[21] P. Kurzweil, “Electrochemical double-layer capacitors,” Encyclopedia of Electrochemical Power Sources, 607-633, 2009.
[22] T. Sato, G. Masuda and K. Takagi, “Electrochemical properties of novel ionic liquids for electric double layer capacitor applications,” Electrochim. Acta 49, 3603-3611 (2004).
[23] J. Ross Macdonald, “Impedance spectroscopy - emphasizing solid materials and systems,” John Wiley & Sons, Inc., New York, 1987.
[24] K. B. Oldham, “A Gouy–Chapman–Stern model of the double layer at a (metal)/(ionic liquid) interface,” J. Electroanal Chem. 613, 131-138 (2008).
[25] P. Delahay, “Double layer and electrode kinetics,” John Wiley & Sons, Inc., New York, 1965.
[26] G. Bontempelli and R. Toniolo, “Electrochemical:linear sweep and cyclic voltammetry,” Encyclopedia of Electrochemical Power Sources, 643-654, 2009.
[27] F. Crespi, T. G. England and D. G. Trist, “Simultaneous, selective detection of catecholaminergic and indolaminergic signals using cyclic voltammetry with treated micro-sensor,” J. Neurosci. Meth. 61, 201-212 (1995).
[28] M. Cremer, “Zeitschrift for Biologie,” 562-608, Berlin, 1906
[29] P. Bergveld, “Development of an ion-sensitive solid-state device for neurophysiological measurements,” IEEE Trans. Biomed. Eng. 17, 70-71 (1970).
[30] P. Bergveld, “Thirty years of ISFETOLOGY what happened in the past 30 years and what may happen in the next 30 years,” Sens. Actuators B: Chem. 88, 1-20 (2003).
[31] C. J. Jorquera, O. Jahir and B. Antoni, “ISFET based microsensors for environmental monitoring,” Sensors 10, 61-83 (2010).
[32] J. Van Der Spiegel, I. Lauks, P. Chan and D. Babic, “The extended gate chemical sensitive field effect transistor as multi-species microprobe,” Sens. Actuators B: Chem. 4, 291-298 (1983).
[33] J. Schoning and A. Poghossian, “Recent advances in biologically sensitive Field-effect Transistors,” Analyst 127, 1137-1151 (2002).
[34] D. E. Yates, S. Levine and T. W. Healy, “Site-binding mode of the electrical double aayer at the oxide/water interface,” J. Chem. Soc. Faraday Trans. 70, 1807-1818 (1974).
[35] I.-Y. Huang and R.-S. Huang, “Fabrication and characterization of a new planar solid-state reference electrode for ISFET sensors,” Thin Solid Films 406, 255-261 (2002).
[36] I.-Y. Huang, C.-H. Hsieh and C.-C. Chu, “Study on wafer-level packaging and electrochemical characterization of planar AgCl micro reference electrode,” The IEEE 3rd International Conference on Nano/Molecular Medicine and Engineering, October 18-21, 2009, Tainan, Taiwan.
[37] 邱見泰,微型氯化銀參考電極之封裝與電化學特性分析,中山大學電機工程學系碩士論文,2004。
[38] 朱吉植,平面式微型氯化銀參考電極之晶圓級封裝與電化學特性分析之研究
,中山大學電機工程學系碩士論文,2008。
[39] R. J. J. Funck, W. E. Morf, P. Schulthess, D. Ammann and W. Simon, “Bicarbonate sensitive liquid membrane electrodes based on neutral carriers for hydrogen ions,” Anal. Chem. 54, 423-429 (1982).
[40] R. Latorre, J. J. Donovan, B. F. Gisin, W. Koroshetz and D. C. Tosteson, “Ion transport mediated by the valinomycin analog cyclo in lipid bilayer membranes,” J. Gen. Physiol. 77, 387-417 (1981).
[41] E. J. Fogt, D. F. Untereker, M. S. Norenberg and M. E. Meyerhoff, “Response of ion-selective field effect transistors to carbon dioxide and organic acids,” Anal. Chem. 57, 1995-1998 (1985).
[42] 陳柏翰,應用延伸式閘極場效電晶體偵測水中二氧化碳之研究,中山大學電機工程學系碩士論文,2012。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.117.81.240
論文開放下載的時間是 校外不公開

Your IP address is 18.117.81.240
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code