Responsive image
博碩士論文 etd-0721114-014019 詳細資訊
Title page for etd-0721114-014019
論文名稱
Title
北棉花峽谷內外夏季海洋環境噪音之變化分析
Variation Analysis of Summer Ocean Ambient Noise between Inside and Outside of Northern Mien-Hua Canyon
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
74
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-25
繳交日期
Date of Submission
2014-08-21
關鍵字
Keywords
QPE、莫拉克颱風、海洋環境噪音、錨繩噪音、北棉花峽谷、SHRU、潮汐
QPE, SHRU, Typhoon Morakot, Strumming Noise, Northern Mien-Hua Canyon, Tidal, Ambient Noise
統計
Statistics
本論文已被瀏覽 5731 次,被下載 30
The thesis/dissertation has been browsed 5731 times, has been downloaded 30 times.
中文摘要
本研究以西元2009年QPE實驗(Quantifying, Predicting and Exploiting Uncertainty initiative)在臺灣東北隅的北棉花峽谷海域佈放三組水下錄音系統(Several Hydrophone Receiving Units, SHRU)所收錄的環境噪音為探討對象。其中國立中山大學(National Sun Yat-Sen University, NSYSU)的NSYSU-SHRU佈放於淺海大陸棚上,水深為143 m,時間約為一個月(08/01~09/04),而美國木洞海洋研究所(Woods Hole Oceangraphic Institution, WHOI)的WHOI-SHRU#1和WHOI-SHRU#2則是佈放於相同的五天內(09/04~09/09),佈放位置分別為峽谷上方大陸棚與峽谷地形內,水深分別為126 m與337 m。本論文分析其中50、100、500、1,000、2,000和4,000 Hz共六個頻率,研究結果顯示,NSYSU-SHRU環境噪音的聲壓位準振盪可利用傅立葉分析來計算,並且利用溫度資料來驗證分析的結果,結果發現此區域的環境噪音位準變化具有極低頻的全日潮(K1)和半日潮(M2)潮汐週期。另外本論文也探討環境噪音與頻率間的相依性,在六個分析頻率中,低頻部份包括50與100 Hz,其成份主要貢獻是從遠船噪音與海流擾動纜繩造成的錨繩噪音(Strumming Noise)而來;而六個分析頻率中,較高頻部分為500、1,000、2,000和4,000 Hz,主要是受到區域風影響,這部份的結論可由實驗期間通過的莫拉克(Morakot)颱風,對高頻環境噪音造成的變化得到進一步的佐證。本研究再利用統計的方法,得到NSYSU-SHRU於颱風來臨前後的機率分佈,發現低頻在颱風期間產生顯著變化的原因是錨繩噪音所導致,其聲壓位準變動劇烈且變動性高,機率分佈範圍廣,而高頻則受颱風的風浪噪音影響甚鉅,聲壓位準明顯提高,變動性則降低,機率分佈集中。另外本文也使用WHOI-SHRU#1和WHOI-SHRU#2的資料,來探討相同佈放時間內,位於北棉花峽谷地形內與附近大陸棚所收錄到的環境噪音之差異性,並從不同的深度與地形來觀察相同時間的環境噪音位準。結果發現峽谷內的環境噪音跟大陸棚上的環境噪音相比,因水深不同與峽谷地形產生遮蔽效應的關係,由低頻至高頻低了約14 dB至6 dB不等,而利用此海域峽谷地形的環境噪音特性,可更準確地預估此海域的聲納效能。
Abstract
The ambient noise were measured on 3 SHRUs (Several Hydrophone Record Unit) of QPE (Quantifying, Predicting and Exploiting Uncertainty Initiative) Experiment in the North Mien-Hua Canyon in the summer of 2009, and 6 frequencies, which are 50, 100, 500, 1,000, 3,000 and 4,000 Hz, were analyzed in this study. NSYSU-SHRU was deployed on continental shelf at depth of 143 m by National Sun Yat-Sen University (NSYSU), WHOI-SHRU#1 and WHOI-SHRU#2 were deployed inside and outside of Northern Mien-Hua Canyon at depth of 126 m and 337 m by Woods Hole Oceangraphic Institution (WHOI). The fluctuations of NSUSY-SHRU’s ambient noise levels can be analyzed by Fourier analysis. With the similar analysis on temperature variation, the acoustic data has shown obvious K1 and M2 tidal periods. The frequency dependence of ambient noise was also investigated, the low (50, 100 Hz) frequency components were mainly contributed from distant shipping and strumming noise, and the local wind was the dominant factor in higher (500, 1000, 2,000 and 4,000 Hz) frequencies. The result was further verified by the increased levels at higher frequency due to the typhoon Morakot during the experiment. The probability distribution of ambient noise levels was calculated at each frequency, and was found the lower frequency ambient noise levels were significantly affected by the strumming noise of mooring, and the higher frequency ambient noise levels were significantly affected by the typhoon. Finally, we also investigate the difference between inside and outside of Northern Mien-Hua Canyon by WHOI-SHRU#1 and WHOI-SHRU#2, the low (50, 100 Hz) frequency components were mainly contributed from distant shipping and the masking effect by canyon terrain, the water depth was the dominant factor in higher (500, 1000, 2,000 and 4,000 Hz) frequencies, and the noise level inside of the Northern Mien-Hua Canyon is lower than outside for 6~14 dB.
目次 Table of Contents
摘要 i
目錄 iii
表次 v
圖次 vii
第一章 緒論 1
1.1 研究背景 1
1.2 海洋環境噪音 2
1.2.1 環境噪音和深度 4
1.3 量測系統噪音 8
1.4 研究目的 9
1.5 論文大綱 9
第二章 QPE實驗架構 10
2.1 實驗地點 10
2.2 SHRU 12
2.3 聲學儀器佈放時程 13
2.4 實驗期間之颱風事件 14
第三章 相關理論 16
3.1 取樣定理 16
3.2 噪音位準轉換 18
3.3 統計理論 19
3.3.1 變異數與標準偏差 19
3.3.2 機率密度函數 19
3.3.3 偏率與尖率 22

第四章 結果分析 24
4.1 NSYSU-SHRU資料分析 24
4.1.1 環境噪音的時間變動 24
4.1.2 溫度資料 32
4.2 NSYSU-SHRU之莫拉克颱風事件 33
4.2.1 聲壓位準機率分佈 36
4.3 WHOI-SHRU#1與SHRU#2資料比較 42
4.3.1 時頻譜圖與時間序列分析 44
4.3.2 聲壓位準分佈分析 48
第五章 結論與建議 58
5.1 結論 58
5.2 建議 59
參考文獻 60
參考文獻 References
[1] J. Revie and D. E. Weston, “Hydrophone Signals Due to Tidal and Wave Effects”, Deep Sea Res., 18, 545-546, 1971.
[2] A. C. Duxbury, A. B. Duxbury, and K. A. Sverdrup, An Introduction to the World’s Oceans, 6th Edition, McGraw-Hill, 1997.
[3] G. M. Wenz, “Acoustic Ambient Noise in the Ocean: Spectra and Source”, J. Acoust. Soc. Am., 34, 12, 1936-1956, 1962.
[4] R. J. Urick, Principles of Underwater Sound, 3rd Edition, McGraw-Hill, 1983.
[5] H. W. Marsh, “Origin of the Knudsen Sperctra”, J. Acoust. Soc. Am., 35, 409-410, 1963.
[6] E. Y. T. Kuo, “Deep Sea Noise Due to Surface Motion”, J. Acoust. Soc. Am., 43, 1017-1024, 1968.
[7] 劉金源,水中聲學-水聲系統之基本操作原理,國立編譯館,2001。
[8] R. J. Urick, Ambient Noise in the Sea, Peninsula, 1984.
[9] M. Lomask and R. Frassetto, “Acoustic Measurements in Deep Water Using the Bathyscaph”, J. Acoust. Soc. Am., 32, 1028-1033, 1960.
[10] E. M. Arase , T. Arase, “Ambient Sea Noise in the Deep and Shallow Ocean”, J. Acoust. Soc. Am. 42, 73-77, 1967
[11] A. J. Perrone, Ambient Noise Spectrum Levels as a Function of Water Depth, J. Acoust. Soc. Am., 48, 362-370, 1970.
[12] J. A. Shooter , T. E. DeMary and A. F. Wittenborn, “Depth Dependence of Noise Resulting From Ship Traffic and wind”, IEEE Journal of Oceanic Engineering, 15, 292-298, 1990.
[13] J. A. Shooter and M. L. Gentry, “Wind Generated Noise in the Parece Vela Basin”, J. Acoust. Soc. Am. 70, 1757-1761, 1981.
[14] B.C. Kim and H. Cho, “Measurement of low-frequency underwater noise by a self-recording hydrophone”, Pacific Rim Underwater Acoustics Conference, 1-2, 2007.
[15] A. E. Newhall, G. G. Gawarkiewicz and J. F. Lynch, Acoustic and Oceanographic Observations Collected During the QPE Experiment by Research Vessels OR1, OR2 and OR3 in the East China Sea in the Summer of 2009, Technical Report, Woods Hole Oceanographic Institution, August 2010.
[16] 中央氣象局颱風資料庫 (http://www.cwb.gov.tw ) 。
[17] R. L. Pirie, A Study of Ambient Noise in Shallow Water, Florida Atlantic University, 1999.
[18] H. Medwin and C. S. Clay, Fundamentals of Acoustical Oceanography, Academic Press, 1998.
[19] MathWorks, Signal Processing Toolbox User’s Guide, the MathWorks Inc., 1998.
[20] D. E. Newland, Random Vibrations, Spectral and Wavelet Analysis, 3th Edition, Longman Scientific & Technical, 1993.
[21] G. Keller and B. Warrack, Statistics for Management and Economics, 5th Edition, Duxbury, 2000.
[22] G. M. Wenz, “Review of Underwater Acoustics Research : Noise”, J. Acoust. Soc. Am., 51, 1010-1020, 1972.
[23] 湯麟武,港灣及海域工程,中國士木工程學會,民國90年。
[24] A. J. Plueddemann and J. F. Lynch, “Internal Waves and Tides in Shallow Water”, J. Acount. Soc. Am., 98, 2863-2867, 1995.
[25] T. Wang, T. F. Gao, D. J. Jiang, and Y. P. Zhang, “Internal Waves and Temperature Inversion in the East China Sea”, J. Acount. Soc. Am., 107, 2894-2898, 2000.
[26] S. R. Ramp, C. S. Chiu, F. L. Bahr, J. Lynch, T. Duda, D. Tang, and A. K. Liu, “Tracking the Generation Sites and Packet Variability of Internal Solitons in the South China Sea”, J. Acount. Soc. Am., 112, 2449-2453, 2002.
[27] E. M. Arase and T. Arase, “Ambient Sea Noise in the Deep and Shallow Ocean”, J. Acount. Soc. Am., 23, 73-77, 1967.
[28] 林文斐,風延遲效應對海洋環境噪音之影響研究,國立中山大學海下技術研究所碩士論文, 民國90年。
[29] 陳勇杰,淺海環境噪音之深度相依研究,國立中山大學海下技術研究所碩士論文, 民國91年。
[30] 劉志昇,南海低頻環境噪音之分析,國立中山大學海下技術研究所碩士論文,民國93年。
[31] 林柏滄,亞洲海域國際聲學南海實驗之低頻環境噪音垂直方向性分析,國立中山大學海下技術研究所碩士論文,民國93年。
[32] 蔡忠廷,台灣西南海域之淺海環境噪音分析,國立中山大學海下技術研究所碩士論文,民國96年。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code