Responsive image
博碩士論文 etd-0721114-105523 詳細資訊
Title page for etd-0721114-105523
論文名稱
Title
無人水下載具之單一斜距定位研究
Position Estimation of an Underwater Vehicle Using Ranges from One Transponder
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
114
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-08-26
繳交日期
Date of Submission
2014-08-21
關鍵字
Keywords
定位、卡曼濾波、單一應答器、水下載具
Kalman filter, Single transponder, Underwater vehicle, Positioning
統計
Statistics
本論文已被瀏覽 5633 次,被下載 426
The thesis/dissertation has been browsed 5633 times, has been downloaded 426 times.
中文摘要
為了達到節省應答器佈放與定位作業成本、提高作業效率的目的,本論文以單一應答器所提供之斜距資訊來取代長基線定位系統。本研究分別透過擴展式卡曼濾波(EKF)與自適性卡曼濾波(AKF)整合單一應答器、深度計、都卜勒流速計與姿態感測儀之量測資訊,且考慮各個感測儀器之更新頻率,建立無人水下載具之單一斜距定位演算法,完成擴展式單一斜距定位系統(EKF-SR)與自適性單一斜距定位系統(AKF-SR)演算開發,並進一步於不同的起始條件下於數值模擬與實海域定位實驗進行定位估算性能測試。研究結果顯示EKF-SR與AKF-SR在載具起點水平位置已知且誤差共變異矩陣設置理想的情況下進行定位估算,兩單一斜距定位估算法皆具有穩健估算與精準定位之性能,但EKF-SR受到誤差共變異矩陣設置形式影響較大,AKF-SR則是起點水平位置誤差的收斂速度較慢,另一方面,本論文也證實載具軌跡會直接影響兩運算法之收斂起點水平位置誤差性能。雖然EKF-SR與AKF-SR估算性能受到起始條件與載具軌跡路徑之限制,但兩運算法依然能達到校正估測誤差、量測誤差以及穩健估算載具的三維座標之目的。
Abstract
This study is to develop a range-only positioning approach that integrates the real-time measurements of a pressure sensor, the velocity evaluation from the Doppler velocity log (DVL) and the range information between a single seabed transponder and an underwater vehicle. This technique was used to effectively reduce the cost of deployments of the seafloor transponders, to precisely navigate the underwater vehicles, and to practically improve the variation of the update sampling rate from all rigs. The Extended Kalman filter and the Adaptive Kalman filter were employed to integrate the slant-range measurements from a single transponder, the velocity data from a DVL, the depth data from the pressure sensor, and the attitude angle from a gyrocompass. As a result, both of the filters are called the Extended Kalman filter Slant-range positioning system (EKF-SR) and the Adaptive Kalman filter Slant-range positioning system (AKF-SR), respectively. Numerical simulations and field experiments were conducted to test the performance of the proposed algorithm of this single-transponder underwater navigating method. However, the limitations of the initial condition will be the indicator to decide which filter should be better and the vehicle trajectory will affect algorithm convergence performance. The simulated and experimental results demonstrate that the proposed algorithm is robust to rectify the measurement errors and to provide accurate position for an underwater vehicle.
目次 Table of Contents
論文審定書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
致謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
第一章緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 前言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 動機與目的. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
第二章研究方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 應答器定位估算. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 都卜勒流速計定位估算. . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 卡曼濾波. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 離散式卡曼濾波. . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 擴展式卡曼濾波. . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3 自適性卡曼濾波. . . . . . . . . . . . . . . . . . . . . . . . . 18
第三章單一斜距定位系統建模. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1 單一斜距系統模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.1 擴展式單一斜距定位系統. . . . . . . . . . . . . . . . . . . . 24
3.1.2 自適性單一斜距定位系統. . . . . . . . . . . . . . . . . . . . 28
3.2 觀測值非同步更新之定位估算. . . . . . . . . . . . . . . . . . . . . . 29
第四章數值模擬與性能評估. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1 感測儀器誤差來源. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 數值模擬設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 直線軌跡定位估算. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.1 數值模擬I . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.2 數值模擬II . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.3 數值模擬III . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.4 數值模擬IV . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 圓形軌跡定位估算. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4.1 數值模擬I . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4.2 數值模擬II . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4.3 數值模擬III . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4.4 數值模擬IV . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5 平行線軌跡定位估算. . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.5.1 數值模擬I . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.5.2 數值模擬II . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.5.3 數值模擬III . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5.4 數值模擬IV . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.6 檢視單一斜距定位系統之定位估算性能. . . . . . . . . . . . . . . . . 62
第五章實海域定位實驗與分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.1 實驗規劃. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 實海域軌跡定位估算. . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2.1 數值模擬I . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2.2 數值模擬II . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.3 數值模擬III . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2.4 數值模擬IV . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
第六章結論與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2 討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
附錄A 狀態過度矩陣與Bar-Shalom 程序誤差共變異矩陣推導過程. . . . . . . 85
附錄B 逆威沙特分布與參數選用. . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
附錄C 四種數值模擬之起始參數設置. . . . . . . . . . . . . . . . . . . . . . . . . 93
C.1 數值模擬I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
C.2 數值模擬II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
C.3 數值模擬III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
C.4 數值模擬IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
參考文獻 References
[1] Bar-Shalom, Y., Li, X.-R., and Kirubarajan, T., 2001, Estimation with Applications to Tracking and Navigation, John Wiley and Sons.
[2] Edwin, O., John, J. L., Seth, T., 2006, “Robust Range-Only Beacon Localization,” IEEE Journal of Oceanic Engineering, Vol. 31, No. 4, pp. 949-958.
[3] Eustice, R.M., Whitcomb, L.L., Singh, H., Grund, M., 2007, “Experimental Results in Synchronous-Clock One-Way-Travel-Time Acoustic Navigation for Autonomous Underwater Vehicles,” International Conference on Robotics and Automation, 10-14 April 2007, Roma, pp. 4257 - 4264.
[4] Fossen T. I., 1994, Guidance and Control of Ocean Vehicles, John Wiley and Sons, Chichester.
[5] Gadre, A.S., Stilwell, D.J., 2005, “Underwater Navigation In the Presence of Unknown Currents Based On Range Measurements From a Single Location,”
American Control Conference, 8-10 June 2005, Portland, OR, USA, pp. 656-661.
[6] Grenon, G., An, P. E., Smith, S. M., Healey, A. J., 2001, “Enhancement of the Inertial Navigation System for the Morpheus Autonomous Underwater Vehicles,” IEEE Journal of Oceanic Engineering, Vol. 26, No. 4, pp. 548-560.
[7] Heffes, H., 1966, “The Effect of Erroneous Models on the Kalman Filter Response,”IEEE Trans. Automat. Contr, Vol. AC-11, pp. 541-543.
[8] Jouffroy, J., Reger, J., 2006, “An Algebraic Perspective to Single-Transponder Underwater Navigation,” IEEE International Symposium on Intelligent Control, 4-6 Oct. 2006, Munich, Germany, pp. 1789-1794.
[9] Kalman, R.E., 1960, “A New Approach to Linear Filtering and Prediction Problems,” Journal of Basic Engineering, Vol. 82, No. 1, pp. 35-45.
[10] Kanti V. Mardia, J. T. Kent and J. M. Bibby., 1979, Multivariate Analysis. Academic Press.
[11] Kinsey, J.C., Eustice, M.R., Whitcomb, L.L., 2006, “A Survey of Underwater Vehicle Navigation: Recent Advances and New Challenges,” Proceedings of the 7th Conference on Maneuvering and Control of Marine Craft, 22 Sep. 2006, IFAC, Lisbon, Portugal, pp. 1–12.
[12] Kussat, N. H., Chadwell, C. D., Zimmerman, R., 2005, “Absolute Positioning of an Autonomous Underwater Vehicle Using GPS and Acoustic Measurements,” IEEE Journal of Oceanic Engineering, Vol. 30, No. 1, pp. 153-164.
[13] McEwen, R., Thomas, H., Weber, D., Psota, F., 2005, “Performance of an AUV Navigation System at Arctic Latitudes,” IEEE Journal of Oceanic Engineering, Vol. 30, No. 2, pp. 443-454.
[14] McPhail, S.D., Pebody, M., 2009, “Range-Only Positioning of a Deep-Diving Autonomous Underwater Vehicle From a Surface Ship,” IEEE Journal of Oceanic Engineering, Vol. 34, No. 4, pp. 669-677.
[15] Mehra, R., 1970, “On the identification of variances and adaptive Kalman filtering.” IEEE Transactions on Automatic Control, Vol. 15, No. 2, pp. 175 -184.
[16] Mehra, R., 1972, “Approaches to adaptive filtering.” IEEE Transactions on Automatic Control, Vol. 17, pp. 693-698.
[17] Milne, P. H., 1983, Underwater Acoustic Positioning System, Gulf Publishing Company
[18] Nishimura T., 1967, “Error bounds of continuous Kalman filters and the application to orbit determination problems.”, IEEE Trans. Automatic Control, Vol.AC-12, pp. 268 -275.
[19] Särkkä, S., 2007, “On unscented Kalman filtering for state estimation of continuous-time nonlinear systems,” IEEE Transactions on Automatic Control, Vol. 52, No. 9, pp. 1631-1641.
[20] Särkkä, S., A. Nummenmaa, 2009, “Recursive noise adaptive Kalman filtering by variational Bayesian approximations,” IEEE Transactions on Automatic Control, Vol. 54, No. 3, pp. 596-600.
[21] Särkkä, S. Hartikainen J., 2013, “ Non-linear noise adaptive Kalman filtering via variational Bayes,” Machine Learning for Signal Processing (MLSP), 22-25 Sept. 2013, Southampton, pp. 1-6.
[22] Särkkä, S., 2013, Bayesian Filtering and Smoothing, Cambridge University Press.
[23] Willumsen, A.B., 2006, Hallingstad, O., Jalving, B., “Integration of Range, Bearing and Doppler Measurements From Transponders into Underwater Vehicle Navigation Systems,” Proceedings of IEEE/MTS OCEANS2006, 18-21 Sept. 2006, Boston, MA, USA, pp. 1-6.
[24] 丁靖鐘,2013,聲速變動與量測誤差對海底應答器定位之影響,國立中山大學碩士論文。
[25] 邱楫文,2011,長基線定位系統與載具動態模式之整合研究,國立中山大學碩士論文。
[26] 陳信宏,2012,複合模式無人水下載具關鍵性系統整合技術開發-子計畫五:複合模式無人水下載具之單一斜距定位研究,行政院國家科學委員會補助專題研究計畫。
[27] 張信齊,2013,都卜勒流速儀定位系統之感測器對準偏差校正,國立中山大學碩士論文。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code