Responsive image
博碩士論文 etd-0721114-182635 詳細資訊
Title page for etd-0721114-182635
論文名稱
Title
探討腫瘤易感基因TSG101在細胞自噬作用的角色
The Role of ESCRT-1 member Tumor Susceptibility Gene 101 in Cellular Autophagic Pathway.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
80
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-08-20
繳交日期
Date of Submission
2014-08-22
關鍵字
Keywords
腫瘤易感基因101、細胞自噬作用、rapamycin、內含體分選傳輸複合體、amphisome、MAP1LC3-II
MAP1LC3-II, Autophagy, amphisome, rapamycin, ESCRT, Tumor Susceptibility Gene 101
統計
Statistics
本論文已被瀏覽 5698 次,被下載 64
The thesis/dissertation has been browsed 5698 times, has been downloaded 64 times.
中文摘要
細胞內噬作用參與調控內吞營養物質、細胞表面接受器再循環利用和分解等過程,其中內含體分選傳輸複合體ESCRTs會協助多囊泡體(MVBs)之形成、蛋白質分選及囊泡運輸作用。腫瘤易感基因101 (TSG101)是組成ESCRT-I成員之一,參與內含體蛋白傳送至多囊泡體之步驟。細胞的內噬路徑囊泡與細胞自噬路徑囊泡皆會直接與溶酶體融合,藉由溶酶體內的酵素將其內涵之蛋白分解回收再利用。在有些情況下,細胞自噬小體與多囊泡體會融合形成amphisome,進一步分解細胞自噬體與多囊泡體中的分子,其主要功能是清除細胞內錯誤摺疊、異常堆積的泛素化蛋白及老化的胞器,以維持細胞的生理平衡。文獻指出細胞內噬路徑異常會影響細胞自噬作用的進行。細胞藉由自噬作用清除無用蛋白或胞器的過程中需要ESCRTs的幫助,避免造成與蛋白質沉積相關的退化性疾病如神經退化或癌症之發生。而SQSTM1/p62具有與泛素結合功能區,可標記細胞中異常聚積之泛素化蛋白,在自噬作用路徑受阻無法順利將之清除時,會有SQSTM1/p62累積現象。我們結果顯示當細胞處於飢餓狀態或是處理細胞自噬誘導劑時,會增加TSG101及細胞自噬作用蛋白MAP1LC3-II的表現量,顯示TSG101可能參與細胞自噬作用的調控。本研究中以神經母細胞瘤SHSY5Y細胞模式及建立自噬標幟螢光蛋白GFP-MAP1LC3報導細胞株,用以探討TSG101在細胞自噬作用之角色,實驗中以siRNA抑制TSG101蛋白表現後,細胞再處理細胞自噬誘導劑rapamycin或是細胞自噬抑制劑chloroquine後,來觀察TS101表現降低對自噬作用相關標幟蛋白MAP1LC3-II、SQSTM1/p62及細胞中泛素修飾蛋白的表現量之影響,以釐清TSG101在細胞自噬作用之角色。實驗結果發現以siRNA抑制TSG101表現會造成MAP1LC3-II、SQSTM1/p62及泛素修飾蛋白質之累積。另一方面,當內源性TSG101表現被抑制時也會增加報導細胞株中的GFP-LC3 綠瑩光亮點數目,且被DsRed-Rab7標定的多囊泡體與細胞自噬體的共位現象也會減少。此結果表示TSG101可能會幫助多囊泡體與細胞自噬小體融合步驟以促進細胞自噬作用進行。本研究結果更增進我們對TSG101參與細胞自噬作用分子機制之瞭解。
Abstract
The endocytosis involves in a variety of cellular activities including nutrient intake, and receptor recycling or degradation. The endosomal sorting complexes required for transport (ESCRTs) plays an important role that orchestrate the formation of multivesicular bodies (MVBs), which regulates protein sorting and vesicular trafficking. Tumor Susceptibility Gene 101(TSG101) is a member of ESCRT-I responsible for sorting ubiquitin-modified protein into MVBs. The endocytic and autophagic pathways merge at the lysosomal compartment. Proteins sorting into the MVBs are processed upon fusion of autophagosome and lysosome to form autophagolysosome by lysosomal enzymatic digestion. The autophagosome can fuse with endosomes/multivesicular bodies to generate the amphisome for degradation cargo containing both autophagic and endocytic materials. This autophagic pathway plays a critical role for cellular physiological homeostasis by clearing misfolded protein, aberrant accumulation of ubiquitin modified proteins, and damaged organelles. Recent reports confirmed that abnormal endocytic pathway may affect autophagic process, which is critical for the prevention of cancer or neuronal degenerative diseases. In addition, SQSTM1/p62 contains an ubiquitin binding domain that can bind to the ubiquitylated proteins destined for selective degradation. The accumulation of SQSTM1/p62 serves as a marker for perturbation of autophagic process. Our previous data indicated that TSG101 and MAP1LC3-II are upregulated simultaneously upon starvation or autophagic induction with rapamycin. In this study, the neuroblastoma SH-SY5Y and GFP-LC3 autophagic reporter cell lines were used to investigate the effect of TSG101 on the LC3-II, p62 and ubiquitinated protein levels upon deprivation of TSG101 using siRNA in conjunction with the treatment of autophagic modulators, rapamycin and chloroquine. We found that silencing of TSG101 resulted in the accumulation of MAP1LC3-II, SQSTM1/p62, and ubiqutinated proteins. The number of GFP-LC3 puncta was increased in TSG101 knockdown SHSY5Y cells, while co-localization of DsRed-Rab7-associated MVB and autophagosome were diminished, suggesting TSG101 may facilitate fusion steps of autophagosome with MVB to promote autophagic activity. These results provide the new role and molecular mechanism of TSG101 in the autophagic pathway.
目次 Table of Contents
論文審定書 ..................................................................................................................... i
致謝 ................................................................................................................................ ii
摘要 ............................................................................................................................... iii
Abstract ........................................................................................................................... v
前 言 .............................................................................................................................. 1
腫瘤易感基因 TSG101 的功能與背景 ................................................................. 1
細胞內噬作用(endocytosis)的功能 ....................................................................... 2
ESCRT 的功能 ....................................................................................................... 2
細胞自噬作用的功能與背景 ................................................................................ 3
蛋白質的泛素化作用 ............................................................................................ 5
細胞內噬作用與細胞自噬作用的關係 ................................................................ 6
神經退化性疾病與細胞內噬作用及細胞自噬作用的關聯性 ............................ 7
材料與方法 .................................................................................................................. 10
一、細胞培養 ...................................................................................................... 10
二、質體的製備 .................................................................................................. 10
三、真核細胞轉染(transfection) ......................................................................... 12
四、蛋白質萃取 .................................................................................................. 13
五、西方墨點法(Western blotting) ..................................................................... 14
六、RNA 干擾技術(RNA interference) .............................................................. 15
七、免疫螢光染色法(immunofluorescence staining) ................................... 16
八、永久轉染細胞株 (stable transfection) ........................................................ 16
結果 .............................................................................................................................. 18
誘發細胞自噬作用會增加 TSG101 的蛋白質表達 ........................................... 18
誘發細胞自噬作用會增加 GFP-MAP1LC3 的螢光蛋白質表達 ...................... 19
抑制 TSG101 的表達會影響細胞自噬標誌蛋白 MAP1LC3 的表現 ............... 20
抑制 TSG101 蛋白質表現會導致 GFP-MAP1LC3 螢光標定亮點累積 ......... 21
抑制 TSG101 蛋白質表達會影響泛素化修飾蛋白之分解路徑 ....................... 22
TSG101 與細胞自噬作用路徑之關係 ................................................................ 24
進一步探討 TSG101 對 amphisome 形成之影響 .............................................. 26
討論 .............................................................................................................................. 28
細胞可能藉由增加 TSG101 的蛋白質表達協助細胞自噬作用進行 ............... 28
抑制 TSG101 蛋白質會影響細胞自噬作用的進行造成細胞自噬體累積 ....... 31
探討泛素修飾蛋白質與 TSG101 及細胞自噬作用之關係 ............................... 34
TSG101 對於細胞自噬作用路徑之調控角色 .................................................... 36
總結與展望 .................................................................................................................. 40
圖表 .............................................................................................................................. 42
參考文獻 ...................................................................................................................... 62
補充結果圖表 .............................................................................................................. 69
附錄 .............................................................................................................................. 72
參考文獻 References
1. Li L, Cohen SN: Tsg101: a novel tumor susceptibility gene isolated by controlled homozygous functional knockout of allelic loci in mammalian cells. Cell 1996, 85(3):319-329.
2. Liu RT, Huang CC, You HL, Chou FF, Hu CC, Chao FP, Chen CM, Cheng JT: Overexpression of tumor susceptibility gene TSG101 in human papillary thyroid carcinomas. Oncogene 2002, 21(31):4830-4837.
3. Chang JG, Su TH, Wei HJ, Wang JC, Chen YJ, Chang CP, Jeng CJ: Analysis of TSG101 tumour susceptibility gene transcripts in cervical and endometrial cancers. Br J Cancer 1999, 79(3-4):445-450.
4. Kantamneni S, Holman D, Wilkinson KA, Correa SA, Feligioni M, Ogden S, Fraser W, Nishimune A, Henley JM: GISP binding to TSG101 increases GABA receptor stability by down-regulating ESCRT-mediated lysosomal degradation. Journal of neurochemistry 2008, 107(1):86-95.
5. McDonald B, Martin-Serrano J: Regulation of Tsg101 expression by the steadiness box: a role of Tsg101-associated ligase. Molecular biology of the cell 2008, 19(2):754-763.
6. Morris CR, Stanton MJ, Manthey KC, Oh KB, Wagner KU: A knockout of the Tsg101 gene leads to decreased expression of ErbB receptor tyrosine kinases and induction of autophagy prior to cell death. PloS one 2012, 7(3):e34308.
7. Falguieres T, Luyet PP, Bissig C, Scott CC, Velluz MC, Gruenberg J: In vitro budding of intralumenal vesicles into late endosomes is regulated by Alix and Tsg101. Molecular biology of the cell 2008, 19(11):4942-4955.
8. Jiao J, Sun K, Walker WP, Bagher P, Cota CD, Gunn TM: Abnormal regulation of TSG101 in mice with spongiform neurodegeneration. Biochimica et biophysica acta 2009, 1792(10):1027-1035.
9. Raiborg C, Stenmark H: The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 2009, 458(7237):445-452.
10. Henne WM, Buchkovich NJ, Emr SD: The ESCRT pathway. Developmental cell 2011, 21(1):77-91.
11. Slagsvold T, Aasland R, Hirano S, Bache KG, Raiborg C, Trambaiolo D, Wakatsuki S, Stenmark H: Eap45 in mammalian ESCRT-II binds ubiquitin via a phosphoinositide-interacting GLUE domain. The Journal of biological chemistry 2005, 280(20):19600-19606.
12. Lee JA, Gao FB: Neuronal Functions of ESCRTs. Experimental neurobiology 2012, 21(1):9-15.
13. Chu T, Sun J, Saksena S, Emr SD: New component of ESCRT-I regulates endosomal sorting complex assembly. The Journal of cell biology 2006, 175(5):815-823.
14. Hurley JH: The ESCRT complexes. Critical reviews in biochemistry and molecular biology 2010, 45(6):463-487.
15. Barajas D, Martin IF, Pogany J, Risco C, Nagy PD: Noncanonical role for the host Vps4 AAA+ ATPase ESCRT protein in the formation of Tomato bushy stunt virus replicase. PLoS Pathog 2014, 10(4):e1004087.
16. Jing K, Lim K: Why is autophagy important in human diseases? Experimental & molecular medicine 2012, 44(2):69-72.
17. Funderburk SF, Marcellino BK, Yue Z: Cell "self-eating" (autophagy) mechanism in Alzheimer's disease. The Mount Sinai journal of medicine, New York 2010, 77(1):59-68.
18. Sahu R, Kaushik S, Clement CC, Cannizzo ES, Scharf B, Follenzi A, Potolicchio I, Nieves E, Cuervo AM, Santambrogio L: Microautophagy of cytosolic proteins by late endosomes. Developmental cell 2011, 20(1):131-139.
19. Johansen T, Lamark T: Selective autophagy mediated by autophagic adapter proteins. Autophagy 2011, 7(3):279-296.
20. Wada Y, Sun-Wada GH, Kawamura N: Microautophagy in the visceral endoderm is essential for mouse early development. Autophagy 2013, 9(2):252-254.
21. Simonsen A, Tooze SA: Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes. The Journal of cell biology 2009, 186(6):773-782.
22. Abounit K, Scarabelli TM, McCauley RB: Autophagy in mammalian cells. World journal of biological chemistry 2012, 3(1):1-6.
23. Moloughney JG, Monken CE, Tao H, Zhang H, Thomas JD, Lattime EC, Jin S: Vaccinia virus leads to ATG12-ATG3 conjugation and deficiency in autophagosome formation. Autophagy 2011, 7(12):1434-1447.
24. Yamada Y, Suzuki NN, Hanada T, Ichimura Y, Kumeta H, Fujioka Y, Ohsumi Y, Inagaki F: The crystal structure of Atg3, an autophagy-related ubiquitin carrier protein (E2) enzyme that mediates Atg8 lipidation. The Journal of biological chemistry 2007, 282(11):8036-8043.
25. Ni HM, Bockus A, Wozniak AL, Jones K, Weinman S, Yin XM, Ding WX: Dissecting the dynamic turnover of GFP-LC3 in the autolysosome. Autophagy 2011, 7(2):188-204.
26. Lim GG, Chew KC, Ng XH, Henry-Basil A, Sim RW, Tan JM, Chai C, Lim KL: Proteasome inhibition promotes Parkin-Ubc13 interaction and lysine 63-linked ubiquitination. PloS one 2013, 8(9):e73235.
27. Chen D, Dou QP: The ubiquitin-proteasome system as a prospective molecular target for cancer treatment and prevention. Curr Protein Pept Sci 2010, 11(6):459-470.
28. Lehman NL: The ubiquitin proteasome system in neuropathology. Acta neuropathologica 2009, 118(3):329-347.
29. Ohta T, Fukuda M: Ubiquitin and breast cancer. Oncogene 2004, 23(11):2079-2088.
30. Nelson DE, Randle SJ, Laman H: Beyond ubiquitination: the atypical functions of Fbxo7 and other F-box proteins. Open Biol 2013, 3(10):130131.
31. Ding F, Xiao H, Wang M, Xie X, Hu F: The role of the ubiquitin-proteasome pathway in cancer development and treatment. Frontiers in bioscience (Landmark edition) 2014, 19:886-895.
32. Cheng S, Yan W, Gu W, He Q: The ubiquitin-proteasome system is required for the early stages of porcine circovirus type 2 replication. Virology 2014, 456-457:198-204.
33. Tanji K, Miki Y, Ozaki T, Maruyama A, Yoshida H, Mimura J, Matsumiya T, Mori F, Imaizumi T, Itoh K et al: Phosphorylation of serine 349 of p62 in Alzheimer's disease brain. Acta neuropathologica communications 2014, 2:50.
34. Brennand A, Gualdron-Lopez M, Coppens I, Rigden DJ, Ginger ML, Michels PA: Autophagy in parasitic protists: unique features and drug targets. Molecular and biochemical parasitology 2011, 177(2):83-99.
35. Filimonenko M, Stuffers S, Raiborg C, Yamamoto A, Malerod L, Fisher EM, Isaacs A, Brech A, Stenmark H, Simonsen A: Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease. The Journal of cell biology 2007, 179(3):485-500.
36. Manil-Segalen M, Lefebvre C, Culetto E, Legouis R: Need an ESCRT for autophagosomal maturation? Communicative & integrative biology 2012, 5(6):566-571.
37. Winslow AR, Rubinsztein DC: Autophagy in neurodegeneration and development. Biochimica et biophysica acta 2008, 1782(12):723-729.
38. Tooze SA, Schiavo G: Liaisons dangereuses: autophagy, neuronal survival and neurodegeneration. Current opinion in neurobiology 2008, 18(5):504-515.
39. Funk KE, Kuret J: Lysosomal fusion dysfunction as a unifying hypothesis for Alzheimer's disease pathology. International journal of Alzheimer's disease 2012, 2012:752894.
40. Michelet X, Legouis R: Autophagy in endosomal mutants: Desperately seeking to survive. Worm 2012, 1(4):216-220.
41. Doyotte A, Russell MR, Hopkins CR, Woodman PG: Depletion of TSG101 forms a mammalian "Class E" compartment: a multicisternal early endosome with multiple sorting defects. J Cell Sci 2005, 118(Pt 14):3003-3017.
42. Levine B, Kroemer G: Autophagy in the pathogenesis of disease. Cell 2008, 132(1):27-42.
43. Ulamek-Koziol M, Furmaga-Jablonska W, Januszewski S, Brzozowska J, Scislewska M, Jablonski M, Pluta R: Neuronal autophagy: self-eating or self-cannibalism in Alzheimer's disease. Neurochemical research 2013, 38(9):1769-1773.
44. Bayer TA: Proteinopathies, a core concept for understanding and ultimately treating degenerative disorders? European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology 2013.
45. Lee JA, Gao FB: Inhibition of autophagy induction delays neuronal cell loss caused by dysfunctional ESCRT-III in frontotemporal dementia. The Journal of neuroscience : the official journal of the Society for Neuroscience 2009, 29(26):8506-8511.
46. Ghavami S, Shojaei S, Yeganeh B, Ande SR, Jangamreddy JR, Mehrpour M, Christoffersson J, Chaabane W, Moghadam AR, Kashani HH et al: Autophagy and apoptosis dysfunction in neurodegenerative disorders. Progress in neurobiology 2014, 112:24-49.
47. Tamai K, Toyoshima M, Tanaka N, Yamamoto N, Owada Y, Kiyonari H, Murata K, Ueno Y, Ono M, Shimosegawa T et al: Loss of hrs in the central nervous system causes accumulation of ubiquitinated proteins and neurodegeneration. The American journal of pathology 2008, 173(6):1806-1817.
48. Rusten TE, Stenmark H: How do ESCRT proteins control autophagy? J Cell Sci 2009, 122(Pt 13):2179-2183.
49. Tanemura M, Ohmura Y, Deguchi T, Machida T, Tsukamoto R, Wada H, Kobayashi S, Marubashi S, Eguchi H, Ito T et al: Rapamycin causes upregulation of autophagy and impairs islets function both in vitro and in vivo. American journal of transplantation : official journal of the American
Society of Transplantation and the American Society of Transplant Surgeons 2012, 12(1):102-114.
50. Majumder S, Richardson A, Strong R, Oddo S: Inducing autophagy by rapamycin before, but not after, the formation of plaques and tangles ameliorates cognitive deficits. PloS one 2011, 6(9):e25416.
51. Wullschleger S, Loewith R, Hall MN: TOR signaling in growth and metabolism. Cell 2006, 124(3):471-484.
52. Shimobayashi M, Takematsu H, Eiho K, Yamane Y, Kozutsumi Y: Identification of Ypk1 as a novel selective substrate for nitrogen starvation-triggered proteolysis requiring autophagy system and endosomal sorting complex required for transport (ESCRT) machinery components. The Journal of biological chemistry 2010, 285(47):36984-36994.
53. Zhang HH, Lipovsky AI, Dibble CC, Sahin M, Manning BD: S6K1 regulates GSK3 under conditions of mTOR-dependent feedback inhibition of Akt. Mol Cell 2006, 24(2):185-197.
54. Li L, Liao J, Ruland J, Mak TW, Cohen SN: A TSG101/MDM2 regulatory loop modulates MDM2 degradation and MDM2/p53 feedback control. Proceedings of the National Academy of Sciences of the United States of America 2001, 98(4):1619-1624.
55. Mizushima N, Yoshimori T: How to interpret LC3 immunoblotting. Autophagy 2007, 3(6):542-545.
56. Mizushima N, Yoshimori T, Levine B: Methods in mammalian autophagy research. Cell 2010, 140(3):313-326.
57. Moumen A, Patane S, Porras A, Dono R, Maina F: Met acts on Mdm2 via mTOR to signal cell survival during development. Development 2007, 134(7):1443-1451.
58. Maiuri MC, Galluzzi L, Morselli E, Kepp O, Malik SA, Kroemer G: Autophagy regulation by p53. Current opinion in cell biology 2010, 22(2):181-185.
59. Shacka JJ, Klocke BJ, Shibata M, Uchiyama Y, Datta G, Schmidt RE, Roth KA: Bafilomycin A1 inhibits chloroquine-induced death of cerebellar granule neurons. Molecular pharmacology 2006, 69(4):1125-1136.
60. Bray K, Mathew R, Lau A, Kamphorst JJ, Fan J, Chen J, Chen HY, Ghavami A, Stein M, DiPaola RS et al: Autophagy suppresses RIP kinase-dependent necrosis enabling survival to mTOR inhibition. PloS one 2012, 7(7):e41831.
61. Ravikumar B, Futter M, Jahreiss L, Korolchuk VI, Lichtenberg M, Luo S, Massey DC, Menzies FM, Narayanan U, Renna M et al: Mammalian macroautophagy at a glance. J Cell Sci 2009, 122(Pt 11):1707-1711.
67
62. Lee JA: Neuronal autophagy: a housekeeper or a fighter in neuronal cell survival? Experimental neurobiology 2012, 21(1):1-8.
63. Glick D, Barth S, Macleod KF: Autophagy: cellular and molecular mechanisms. The Journal of pathology 2010, 221(1):3-12.
64. Liang SH, Clarke MF: Regulation of p53 localization. European journal of biochemistry / FEBS 2001, 268(10):2779-2783.
65. Juenemann K, Reits EA: Alternative macroautophagic pathways. International journal of cell biology 2012, 2012:189794.
66. Su H, Wang X: The ubiquitin-proteasome system in cardiac proteinopathy: a quality control perspective. Cardiovascular research 2010, 85(2):253-262.
67. VerPlank L, Bouamr F, LaGrassa TJ, Agresta B, Kikonyogo A, Leis J, Carter CA: Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55(Gag). Proceedings of the National Academy of Sciences of the United States of America 2001, 98(14):7724-7729.
68. Sancho E, Vila MR, Sanchez-Pulido L, Lozano JJ, Paciucci R, Nadal M, Fox M, Harvey C, Bercovich B, Loukili N et al: Role of UEV-1, an inactive variant of the E2 ubiquitin-conjugating enzymes, in in vitro differentiation and cell cycle behavior of HT-29-M6 intestinal mucosecretory cells. Molecular and cellular biology 1998, 18(1):576-589.
69. Korolchuk VI, Mansilla A, Menzies FM, Rubinsztein DC: Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates. Mol Cell 2009, 33(4):517-527.
70. Zhao S, Ulrich HD: Distinct consequences of posttranslational modification by linear versus K63-linked polyubiquitin chains. Proceedings of the National Academy of Sciences of the United States of America 2010, 107(17):7704-7709.
71. Zhou C, Zhong W, Zhou J, Sheng F, Fang Z, Wei Y, Chen Y, Deng X, Xia B, Lin J: Monitoring autophagic flux by an improved tandem fluorescent-tagged LC3 (mTagRFP-mWasabi-LC3) reveals that high-dose rapamycin impairs autophagic flux in cancer cells. Autophagy 2012, 8(8):1215-1226.
72. Bucci C, De Luca M: Molecular basis of Charcot-Marie-Tooth type 2B disease. Biochemical Society transactions 2012, 40(6):1368-1372.
73. Fan J, Zeng X, Li Y, Wang S, Wang Z, Sun Y, Gao H, Zhang G, Feng M, Ju D: Autophagy plays a critical role in ChLym-1-induced
74. Chivet M, Hemming F, Pernet-Gallay K, Fraboulet S, Sadoul R: Emerging role of neuronal exosomes in the central nervous system. Frontiers in physiology 2012, 3:145.
75. Ragagnin A, Guillemain A, J N, R. Bailly YJ: Neuronal Autophagy and Prion Proteins. Autophagy - A Double-Edged Sword - Cell Survival or Death? 2013:377-419.
76. Razi M, Futter CE: Distinct roles for Tsg101 and Hrs in multivesicular body formation and inward vesiculation. Molecular biology of the cell 2006, 17(8):3469-3483.
77. Berg TO, Fengsrud M, Stromhaug PE, Berg T, Seglen PO: Isolation and characterization of rat liver amphisomes. Evidence for fusion of autophagosomes with both early and late endosomes. The Journal of biological chemistry 1998, 273(34):21883-21892.
78. 葉俊政 (2012)腫瘤易感基因TSG101對細胞自噬標幟蛋白 MAP1LC3B的影響
79. 游韻真 (2008) GSK-3β是維持TSG101蛋白穩定之胞內訊息傳遞路徑
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code