Responsive image
博碩士論文 etd-0721114-184344 詳細資訊
Title page for etd-0721114-184344
論文名稱
Title
以IDT/ZnO/AlN/Si3N4/Si 結構研製雙頻表面聲波元件
The dual-mode SAW device using IDT/ZnO/AlN/Si3N4/Si structure
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
110
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-23
繳交日期
Date of Submission
2014-08-22
關鍵字
Keywords
層狀結構表面聲波元件、Sezawa 模態、Rayleigh 模態、氧化鋅、氮化鋁
AlN, layer structure of SAW devices, ZnO, Sezawa-mode, Rayleigh-mode
統計
Statistics
本論文已被瀏覽 5711 次,被下載 0
The thesis/dissertation has been browsed 5711 times, has been downloaded 0 times.
中文摘要
本研究之主軸為以IDT/ZnO/AlN/Si3N4/Si結構研製出具雙操作頻率(Rayleigh 模態與Sezawa模態)的表面聲波元件,為了研製出(堆疊型)層狀表面聲波元件,本研究於Si3N4/Si基板上藉由射頻磁控濺鍍法沉積氮化鋁(AlN)及氧化鋅(ZnO)壓電薄膜,並對沉積參數之影響進行探討。藉由X光繞射儀與掃描式電子顯微鏡對AlN及ZnO薄膜進行物性分析,得到具有高C軸優選取向及剖面為柱狀結構之AlN與ZnO薄膜。利用原子力顯微鏡分析其表面粗糙度,ZnO/AlN結構之平均表面粗糙度為7.644 nm。藉由黃光微影及舉離法定義出指叉電極(IDT),製作出IDT/ZnO/AlN/Si3N4/Si表面聲波元件。
本研究結果顯示,基頻Rayleigh 模態共振頻率為144.03 MHz,插入損耗-12.4 dB;第二階 Sezawa模態共振頻率為273.09 MHz,插入損耗-15.8 dB。
Abstract
In this study, dual-mode (Rayleigh-mode and Sezawa-mode) surface acoustic wave (SAW) devices using IDT/ZnO/AlN/Si3N4/Si structure were fabricated. To fabricate dual-mode SAW Devices, the RF magnetron sputtering method for the growth of piezoelectric thin films (AlN and ZnO) onto Si3N4/Si are adopted and influences of the sputtering parameters are investigated. The preferred orientation and crystalline properties of the piezoelectric thin films were evaluated by X-ray diffraction (XRD).The cross–sectional image of the piezoelectric thin films were observed by scanning electron microscopy which revealed a high c-axis preferred orientation. The surface roughness of ZnO/AlN thin films were observed by atomic force microscopy (AFM) and the surface roughness is 7.644 nm. After the ZnO/AlN thin films were deposited, Al layer was deposited onto the ZnO/AlN this films, by a DC sputtering system, and the interdigital transducers (IDTs) using the photolithography method were defined. The frequency response is measured using an E5071C network analyzer.
The frequency response of the fundamental wave mode (Rayleigh-mode) of 144.03 MHz is obtained;the high order frequency response of Sezawa mode (Sezawa-2 mode) of 273.09 MHz is obtained;the insertion loss of Rayleigh-mode and Sezawa-2 mode are -12.4 dB and -15.8 dB respectively.
目次 Table of Contents
摘要 i
目錄 iii
圖目錄 vi
表目錄 x
第一章 前言 1
1.1 研究背景與動機 1
1.2 層狀結構表面聲波元件 4
1.3 研究內容 7
第二章 理論分析 8
2.1 壓電理論 8
2.1.1 壓電效應 9
2.1.2 壓電材料 10
2.2 氮化鋁結構與特性 11
2.3 氧化鋅結構與特性 14
2.4 反應式射頻磁控濺鍍原理 16
2.4.1 輝光放電 16
2.4.2 磁控濺射 18
2.4.3 射頻濺射 20
2.4.4 反應性濺射 20
2.5 薄膜成長機制 21
2.5.1 薄膜沉積階段 21
2.5.2 薄膜表面與剖面結構 24
2.6 表面聲波元件理論與特性 25
2.6.1 表面聲波元件基本設計與特性 25
2.6.2 Rayleigh wave 與 Sezawa wave 29
2.6.3 頻散曲線 30
2.7 表面聲波元件種類 31
2.7.1 共振型表面聲波元件 31
2.7.2 延遲型表面聲波元件 32
2.7.3 表面聲波濾波器 33
2.8 表面聲波元件參數性質 35
2.8.1 聲波波速 35
2.8.2 插入損失 35
2.8.3 機電耦合係數 37
第三章 實驗 38
3.1 實驗流程 38
3.2 基板清洗 40
3.3 薄膜沉積 41
3.3.1 射頻磁控濺鍍系統 41
3.3.2 直流磁控濺鍍系統 44
3.4 薄膜物性分析 45
3.4.1 X-ray 繞射分析 45
3.4.2 Rocking curve 47
3.4.3 掃描式電子顯微鏡 48
3.4.4 原子力顯微鏡 49
3.5 層狀結構表面聲波元件製作流程 50
3.5.1 試片清洗 51
3.5.2 壓電層之製作 51
3.5.3 IDTs指叉電極之製作 52
3.5.4 SAW元件網路分析儀量測 54
第四章 結果與討論 55
4.1 氮化鋁薄膜之特性分析 55
4.1.1 濺鍍功率 55
4.1.2 濺鍍壓力 59
4.2 氧化鋅薄膜之特性分析 63
4.2.1 濺鍍壓力 63
4.2.2 濺鍍功率 67
4.3 ZnO/AlN/Si3N4/Si結構 71
4.4 層狀表面聲波元件之頻率響應 72
4.4.1 調變不同氮化鋁膜厚(固定氧化鋅膜厚) 72
4.4.2 層狀結構之頻率模態比較 78
4.4.3 定義AlN補償層之膜厚 80
4.4.4 調變不同氧化鋅膜厚(固定氮化鋁膜厚) 81
第五章 結論及未來展望 85
參考文獻 87
參考文獻 References
[1]. Takagaki, P.V.Santos, E.Wiebicke, O.Brandt, H.P.Schonherretal, “Super-Frequency Surface Acoustic Wave transducers using AlN layers grown on SiC Substrates”, Applied Physics Letters ,vol. 81, pp 2538 , 2002.
[2]. G.A. Armstrong , S. Crampm , “ Preferential excitation of 2nd-mode piezoelectric surface waves in zinc-oxide-layered substrates ” , Electronics Letters , vol.9, pp.322–323 ,1973
[3]. Zu-wei Zhang , Zhi-yu Wen, Chun-mei Wang , “Investigation of surface acoustic waves propagating in ZnO/SiO2/Si multilayer structure” , Ultrasonics , vol.53 , pp.363–368 , 2013.
[4]. U.-C. Kaletta, P.-V. Santos, D.Wolansky, A.Scheit, M.Fraschke, C.Wipf, P.Zaumseil and C.Wenger , “Monolithic integrated SAW filter based on AlN for high-frequency applications” , Semiconductor Science and Technology, , vol.28 , 065013, 2013.
[5]. Chih-Ming Lin, Yung-Yu Chen, Valery V Felmetsger, Wei-Cheng Lien, Tommi Riekkinen, Debbie G Senesky, “Surface acoustic wave devices on AlN/3C–SiC/Si multilayer structures” , Journal of Micromechanics and Microengineering , vol.23 , 025019, 2013.
[6]. D.-T. Phan , G.-S. Chunget , “Fabrication and characteristics of a surface acoustic wave UV sensor based on ZnO thin films grown on a polycrystalline 3C-SiC buffer layer” , Current Applied Physics , vol.12 , pp. 521-524, 2012.
[7]. Omar Elmazria,Sergei Zhgoon,Laurent Le Brizoual, Frédéric Sarry, Dmitry Tsimbal,and Mohammed Abdou Djouadi, “AlN/ZnO/diamond structure combining isolated and surface acoustic waves” , Applied Physics Letters , vol.95 , pp.233503-233505, 2009.
[8]. Si-Hong Hoang, Gwiy-Sang Chung, “Surface acoustic wave characteristics of AlN thin films grown on a polycrystalline 3C-SiC buffer layer” , Microelectronic Engineering , vol. 86 , pp. 2149–2152 , 2009.
[9]. Wen-Ching Shih, Rei-Ching Huang , “Fabrication of high frequency ZnO thin film SAW devices on silicon substratewith a diamond-like carbon buffer layer using RF magnetron sputtering” , Vacuum , vol. 83 , pp.675–678 , 2009.
[10]. Y.Q. Fu et al , “ZnO film for application in surface acoustic wave device” , Journal of Physics: Conference Series , vol. 76 , pp.012035 , 2007.
[11]. 王宏文,“淺談表面聲波感測器”,工業材料-精密陶瓷專輯(第89期) ,1994。
[12]. Markku Ylilammi Ella, Meeri Partanen, and Jyrki Kaitila, “Thin Film Bulk Acoustic Filter”, IEEE Transactions On Ultrasonics, Ferroelectrics And Frequency Control, vol. 49, No.4 , 2002.
[13]. Richard C. Ruby, Pual Brandley (SM), Yury Oshmyansky, and Allen Chien, “ Thin Film Bulk Acoustic Resonators for Wireless Applications”, IEEE Ultrasonics Symposium, pp. 813-821, 2001.
[14]. L. Rayleigh, “On waves propagated along the plane surface of an elastic solid”, Proceedings London Mathematical Society, vol. 17, pp.4, 1885.
[15]. K. Sezawa, “Dispersion of elastic waves propagated on surface of stratified bodies and curved surfaces”, Bulletin of the Earthquake Research Institute , vol. 3 , pp. 1 ,1927.
[16]. R. M. White and F. W. Voltmer, “Direct piezoelectric coupling to eleastic waves”, Applied Physics Letters, vol. 7, pp.314, 1965.
[17]. J. K. Elliott, R. L. Gunshor, R. F. Pierret, and A. R. Day, “A wideband SAW convolver utilizing Sezawa waves in the metal/ZnO/SiO2/Si configuration”, Applied Physics Letters, vol. 32, pp.515, 1978.
[18]. A. Talbi, F. Sarry, L. Le Brizoual, M. Elhakiki, O. Elmazria and P. Alnot, “Pressure sensitivity of Rayleigh and Sezawa wave in ZnO/Si [001] structures,” IEEE Ultrasonics Symposium, vol. 2 , pp. 1338-1341, 2003.
[19]. T. Shiosaki, T. Yamamoto and A. Kawabata, “Higher order mode Rayleigh waves propagating on ZnO/Substrate structures,” IEEE Ultrasonics Symposium, vol. 1, pp. 814-818, 1977.
[20]. L. Wang, Y. Pu, Y.F. Chen, C.L. Mo, W.Q. Fang, C.B. Xiong, J.N. Dai, F.Y. Jiang, “MOCVD growth of ZnO films on Si(1 1 1) substrate using a thin AlN buffer layer” , Journal of Crystal Growth , vol. 284 , pp.459–463,2005
[21]. M. Purica, E. Budianu, E. Rusu, M. Danila and R. Gavrila, “Optical and structural investigation of ZnO thin films prepared by chemical vapor deposition (CVD),” Thin Solid Films, vol. 403 , pp. 485-488, 2002.
[22]. Z. Fu, B. Lin and J. Zu, “Photoluminescence and structure of ZnO films deposited on si substrates by metal-organic chemical vapor deposition,” Thin Solid Films, vol. 402 , pp. 302-306, 2002.
[23]. Y. Zhang, G. Du, X. Wang, W. Li, X. Yang, Y. Ma, B. Zhao, H. Yang, D. Liu and S. Yang, “X-ray photoelectron spectroscopy study of ZnO films grown by metal-organic chemical vapor deposition,” Journal of Crystal Growth, vol. 252 , pp. 180-183, 2003.
[24]. Yang, C.M.Uehara, K.Kim, S.K, Kameda, S,Nakase, H.Tsubouchi, “Highly c-axis-oriented AlN film using MOCVD for 5GHz-band FBAR filter.”, IEEE Ultrasonics Symposium, vol.1 , pp.170-173 , 2003.
[25]. Mastro, M.A. Eddy, C. R. “MOCVD growth of thick AlN and GaN superlattice structures on Si substrates.” Journal of Crystal Growth, vol.287 , pp. 610-614, 2006.
[26]. Schenk, H.P.D.Kaiser, U.Kipshidze, G.D, Fissel, A.Krulich, J.Hobert, H.Schulze, “Growth of atomically smooth AlN films with a 5: 4 coincidence interface on Si (111) by MBE.”Materials Science and Engineering, pp. 84-87, 1999.
[27]. Mansurov,V.G.Nikitin,A.Y.Galitsyn,Y.G.Svitasheva,S.N.Zhuravlev,L.Horvath, Z.E.&Pecz, B.“AlN growth on sapphire substrate by ammonia MBE.”J Journal of Crystal Growth, vol. 300 , 145-150, 2007.
[28]. Y. Heo, D. Norton and S. Pearton, “Origin of green luminescence in ZnO thin film grown by molecular-beam epitaxy,” Journal of Applied Physics, vol. 98, pp. 073502-1 – 073052-6, 2005.
[29]. K. Sundaram and A. Khan, “Characterization and optimization of zinc oxide films by rf magnetron sputtering,” Thin Solid Films, vol. 295 , pp. 87-91, 1997
[30]. Kao, K. S. Cheng, C. C. “Synthesis of C-axis-oriented aluminum nitride films by reactive RF magnetron sputtering for surface acoustic wave.” Applied Physics,2001.
[31]. Assouar, M. B. Elmazria, O.Le Brizoual, L. Alnot, “Reactive DC magnetron sputtering of aluminum nitride films for surface acoustic wave devices.” ,Diamond and related materials , vol.11 ,2002.
[32]. C. Wang, Z. Ji, K. Liu, Y. Xiang and Z. Ye, “p-Type ZnO thin films prepared by oxidation of Zn3N2thin films deposited by DC magnetron sputtering,” Journal of Crystal Growth, vol. 259, pp. 279-281, 2003.
[33]. J.Curie and P.curie, “ Development by Pressure of Polar Electricity in Hemihedral Crystals with Inclined faces”, Applied Sciences,vol.3, pp.93,1880.
[34]. W.G.HankelandAbh.Sachs,“Piezoelectric”AppliedSciences,vol.12 ,pp.547.1881.
[35]. 吳朗,“電子陶瓷-壓電陶瓷”,全欣資訊圖書,1994。
[36]. 沈靜怡,“Sezawa模態表面聲波共振器應用於人類免疫球蛋白E感測器之研究”,國立中山大學電機工程研究所碩士論文,2012。
[37]. Q.X. Su, P. Kirby, E.Komuro, M.Imura, Q.Zhang, “Whatmore, R. Thin-film bulk acoustic resonators and filters using ZnO and lead-zirconium-titanatethinfilms,” Microwave Theory and Techniques, IEEE Transactions on, pp. 769-778, 2001.
[38]. Kim, B.K., Lee, Y.H., Lee, S.H., Lee, J.K.& Kim, S.W.“A noble suspended type thin film resonator (STFR) using the SOI technology.”Sensors and Actuators A: Physical , vol.89, pp.255-258 ,2001.
[39]. Kirby, P. B., Potter, M. D. G., Williams, C. P. & Lim, M. Y. “Thin film piezoelectric property considerations for surface acoustic wave and thin film bulk acoustic resonators.”Journal of the European Ceramic Society , vol.23 ,2003.
[40]. 顏豐明,“高熱傳導率氮化鋁基板材料之簡介”,材料與社會, 1993。
[41]. 黃肇瑞,“陶瓷技術手冊 (下 ) ”,pp.777,1995。
[42]. H. L. Hartnagel, A. K. Jain and C. Jagadish,“Semiconducting Transparent Thin Films,” published by Institute of Physics Publication, 1995.
[43]. P. Nunes, D. Costa, E. Fortunato and R. Martins, “Performances presented by zinc oxide thin films deposited by rf magnetron sputtering,” Vacuum, vol. 64, pp. 293-297, 2002.
[44]. Y. Igasaki and H. Saito, “The effects of zinc diffusion on the electrical and optical properties of ZnO: Al films prepared by rf reactive sputtering,” Thin Solid Films, vol. 199, pp. 223-230, 1991.
[45]. T.Y. Ma and D.K. Shim, “Effects of rapid thermal annealing on the morphology and electrical properties of ZnO/In films.” Thin Solid Films, vol. 410, pp. 8-13, 2002.
[46]. 施敏、張俊彥,“半導體元件之物理與技術”,儒林,1990。
[47]. R.W. Berry, P.M. Hall and M.T. Harris, “Thin film technology,” Van Nostrand Princeton, New Jersey, 1968.
[48]. J.L. Vossen and W. Kern, “Thin film processes II,”Academic Pr, 1991.
[49]. Brian Chapman, ”Glow Discharge Processes”, John Wiley and Sons, NewYork, 1980.
[50]. E. Janczak-Bienk, H. Jensen and G. Sørensen, “The influence of the reactive gas flow on the properties of AIN sputter-deposited films,” Materials Science and Engineering: A, vol. 140, pp. 696-701, 1991.
[51]. I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, “Microstructural evolution during film growth,” Journal of Vacuum Science and Technology, vol. 21, pp. S117-S128.
[52]. John A. Thornton, Journal of Vacuum Science & Technology A , vol.11, pp.666, 1974
[53]. C. K. Campbell,“Surface Acoustic Wave Devices for Mobile and Wireless communications”,Academic Press, 1998.
[54]. 李其源,“蝕刻晶片厚度即時監控之新穎方法”,國立台灣大學機械工程研究所博士論文,2004。
[55]. 蕭价伶,“非接觸式光學檢測應用於 FPW 元件量測技術”,國立中央大學光電研究所碩士論文,2005。
[56]. 盧建彰,“應用微帶線結構於表面聲波濾波器之研究”,國立成功大學微電子所碩士論文,2003。
[57]. S.H. Tsai, I.T. Tang, M.P. Houng, Y.H.Wang, “A Design Rule of Surface soustic Wave Filter”, Journal of Marine Science and Engineering, vol.34, No.4, pp.231-238, 2002.
[58]. J.W. Gardner, V.K. Varadan and O.O. Awadelkarim, “Microsensors, MEMS, and smart devices,” John Wiley & Sons, 2001.
[59]. C. Campbell and J.C. Burgess, “Surface acoustic wave devices and their signal processing applications” ,Soc, vol. 89, pp. 1479-1480, 1991.
[60]. J. Bowers, B. Khuri‐Yakub and G. Kino, “Broadband efficient thin‐film sezawa wave interdigital transducers,” Applied Physics, vol. 36, pp. 806-807, 1980.
[61]. S. Petroni, G. Tripoli, C. Combi, B. Vigna, M. De Vittorio, M. Todaro, G. Epifani, R. Cingolani and A. Passaseo, “GaN-based surface acoustic wave filters for wireless communications,” Superlattices and Microstructures, vol. 36 , pp. 825-831 , 2004.
[62]. Y. Takagaki, P. Santos, E. Wiebicke, O. Brandt, H.P. Schönherr and K. Ploog, “Guided propagation of surface acoustic waves in AlN and GaN films grown on 4H–SiC (0001) substrates,” Physical Review B, vol. 66, pp. 155439-1 - 155439-7, 2002.
[63]. X. Du, Y. Fu, S. Tan, J. Luo, A. Flewitt, S. Maeng, S. Kim, Y. Choi, D. Lee and N. Park, “ZnO film for application in surface acoustic wave device,” Journal of Physics: Conference Series, pp. 012035-1 – 012035-6, 2007.
[64]. 鄭博書, “製作於矽基板之表面聲波振盪器作為紫外光感測之研究,”國立中山大學電機工程學系碩士班學位論文, 年2008。
[65]. R. Ro, S.Y. Chang, R.C. Hwang and D.H. Lee, “Identification of ionic solutions using a SAW liquid sensor.”, Part A: Physical Science and Engineering,vol 23, pp. 810-815, 1999.
[66]. 朱慕道, 表面聲波元件與應用, 新電子期刊, p183~186, 1994。
[67]. 廖珮淳, “以AlN/Si3N4/Si結構製作第四代通訊用表面聲波元件”國立中山大學電機工程學系碩士班學位論文, 年2013。
[68]. C. Campbell,“Surface acoustic wave devices for mobile and wireless communications,”Academic Press, pp. 108-113 ,INC, 1989.
[69]. R. Pallas-Areny and J.G. Webster, “Sensors & signal conditioning,” Recherche, vol. 67, pp. 02, 2000.
[70]. C. K. Campbell , “Surface Acoustic Wave Devices for Mobile and Wireless Communications”, pp.410,1997.
[71]. 簡俊謙,“表面聲波元件之設計及其在寬頻振盪器之應用”,國立交通大學電信工程研究所碩士論文,2000。
[72]. H. Matthews, “Surface Wave Filters Design, Construction, and Use”, 1979.
[73]. A. J. Slobodnik, J. R. Thomas “SAW device”, Slobodnik, 1979
[74]. B.Y.JL.Huang and.D.F.Lii, “Effect of R.F.Bias and Nitrogen Flow Rate on the Reactive Sputtering of TiAlN Films”, Thin Solid films, vol.293, pp.212, 1997.
[75]. 鄭建銓,“質子交換鈮酸鋰與射頻濺鍍氮化鋁薄膜之表面聲波特性研究”,中山大學博士論文,1996。
[76]. 高國陞,“表面聲波元件之頻率及溫度特性之研究”,國立中山大學電機工程學系博士班學位論文,2004。
[77]. Jun-Phil Jung, Jin-Bock Lee, Jung-Sun Kim, Jin-Seok Park,“Fabrication and characterization of high frequency SAW device with IDT/ZnO/AlN/Si configuration: role of AlN buffer”, Thin Solid Films, vol.447, pp.605–609 , 2004.
[78]. L. Le Brizoual, O. Elmazria, F. Sarry, M. El Hakiki, A. Talbi and P. Alnot, “High frequency SAW devices based on third harmonic generation” , Ultrasonics, vol. 45, pp. 100-103, 2006.
[79]. X. Y. Du, Y. Q. Fu, S. C. Tan, J. K. Luo, A. J. Flewitt, W. I. Milne, D. S. Lee,M. Park, J. Park, Y. J. Choi, S. H. Kim, and S. Maeng, “ZnO film thickness effect on surface acoustic wave modes and acoustic streaming” , Applied Physics Letters, vol.93, pp.094105, 2008.
[80]. 黃元伯,“耦合諧振結構表面聲波元件特性之探討”,成功大學電機工程碩士論文,2003。
[81]. 林志明,“層狀寬頻表面聲波濾波器,國立台灣大學應用力學研究所碩士論文”,2003。
[82]. George Konstantinids, George Deligeorgis,Adrain Dinescu, Antonis Stavrinidis,AlinaCismaru,MirceaDragoman,“SAW device manufactured on GaN/Si for frequencies beyond 5GHz”, IEEE Electron Device Letters, vol.31, pp.1398 -1400, 2010.
[83]. Qi Jie Wang, Christian Pflugl, William F. Andress, Donhee Ham, and Federico Capassob , “ Gigahertz surface acoustic wave generation on ZnO thin films deposited by radio frequency magnetron sputtering on III-V semiconductor Substrates ” , Journal of Vacuum Science & Technology B, vol. 26, No. 6, pp.1848-1851, 2008.
[84]. G.A. Armstrong , S. Crampm , “ Preferential excitation of 2nd-mode piezoelectric surface waves in zinc-oxide-layered substrates ” , Electronics Letters , vol.9, pp.322–323 ,1973
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.144.42.196
論文開放下載的時間是 校外不公開

Your IP address is 3.144.42.196
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code