Responsive image
博碩士論文 etd-0721114-214911 詳細資訊
Title page for etd-0721114-214911
論文名稱
Title
摻鈰光纖抽絲塔製程與特性之研究
Fabrication and Characteristics of Ce-Doped Fibers by Drawing Tower Technique
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
75
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-16
繳交日期
Date of Submission
2014-08-25
關鍵字
Keywords
光學同調斷層掃描術、抽絲塔、摻鈰光纖
Drawing tower, Ce-doped fibers, OCT
統計
Statistics
本論文已被瀏覽 5680 次,被下載 138
The thesis/dissertation has been browsed 5680 times, has been downloaded 138 times.
中文摘要
本研究利用改良式管中棒預型體(rod-in-tube;RIT)技術,藉由商用抽絲塔(drawing tower)成功抽製出具寬頻自發輻射螢光的摻鈰光纖(Ce-doped fiber;CeDF)。以Ce3+ : YAG晶體做為光纖纖芯材料,石英做為光纖纖衣材料,將Ce3+離子摻雜濃度為0.1at %的Ce3+ : YAG晶棒放入多層石英套管中,多層套管採用較緊密的結構以提升抽絲穩定度進而改善摻鈰光纖的纖芯真圓度,增加出光量,最後成功抽製出纖芯直徑為16 μm,纖衣直徑為125 μm的摻鈰光纖,其自發輻射功率密度為13.9 nW/nm。為了提升螢光強度,另外嘗試將改用Ce3+離子摻雜濃度為0.3at %的Ce3+ : YAG晶棒做為纖芯材料製作管中棒預型體,抽製出纖芯直徑為10 μm,纖衣直徑為125 μm的摻鈰光纖,自發輻射功率密度提升至19.6 nW/nm。
抽製出的摻鈰光纖其螢光頻譜展現於500~700nm處,由於其寬頻、短波長與近似高斯分佈的特性,適合應用於光學同調斷層掃描術光源,並利用時域光學同調斷層掃描術系統驗證縱向解析度,其縱向解析度可達1.43 μm,適合用於光學同調斷層掃描術上。以抽絲塔製程研製之CeDF其纖衣直徑與一般通訊用單模光纖相同,故可利用光通訊產業已發展成熟之相關主被動元件,增加其商業化應用的潛力。
Abstract
In this study, the fabrication of broadband fluorescence Ce-doped fibers (CeDFs) with rod-in-tube (RIT) technique by using drawing tower process is proposed and demonstrated.
A preform was assembled by both the Ce:YAG rod doped with 0.1at% Ce3+-ion which acts as core and the multilayer silica tubes as cladding. The outer and inner diameters of the silica tubes are 20 and 3mm, respectively. Then, a RIT preform was employed by inserting the Ce:YAG crystal rod of 4cm length and 2mm diameter into the silica tube. The drawing CeDFs with a 16μm core and a 125μm cladding was measured to have 13.9nW/nm fluorescent power density between wavelength 500-700nm.
In order to improve the fluorescent power density behavior of CeDFs, we used another Ce:YAG rod with higher Ce3+-ion concentration of 0.3at% and inserted it to the multilayer silica tubes of the same size to made another modified preform. As a result, drawing CeDFs with 10μm core and 125μm cladding showed 19.6nW/nm of the fluorescent power density between wavelength 500-700nm.
The drawing CeDFs showed the fluorescence spectrum between 500-700nm. Due to the broad band, short wavelength and near Gaussian distribution characteristics, the CeDFs provides a useful application on OCT systems as the light source. The 10μm core CeDF we fabricated was simulated to have 1.43μm axis resolution in air. Besides, the CeDFs fabricated by drawing tower have the same cladding diameter with commercial single mode fiber. Therefore, it can cooperate with the fully developed optical communication component, and has more potential to commercialize CeDFs.
目次 Table of Contents
中文審定書 i
英文審定書 ii
中文摘要 iii
英文摘要 iv
內容目錄 v
圖目錄 vii
表目錄 x
第一章 緒論 1
1.1 簡介 1
1.2 研究動機 2
第二章 摻鈰晶體特性與OCT理論介紹 6
2.1 Ce3+:YAG的晶體結構與特性 6
2.2 摻鈰晶體的能階模型與吸收及輻射頻譜 10
2.3 同調斷層掃描術 12
2.3.1 低同調干涉術 12
2.3.2 解析度 17
第三章 摻鈰光纖之製作 19
3.1文獻探討 19
3.2 材料性質 20
3.3 抽絲塔製程之摻鈰光纖 23
3.3.1摻鈰光纖預型體 24
3.3.2 抽絲製程 26
第四章 摻鈰光纖之特性量測 39
4.1摻鈰光纖之折射率量測 39
4.2摻鈰光纖之傳輸損耗量測 42
4.3摻鈰光纖之自發輻射螢光頻譜量測 46
4.4微結構分析 48
4.5摻鈰光纖之縱向解析度與OCT系統 51
第五章 結論 58
5.1結論 58
5.2討論 59
參考文獻 61
參考文獻 References
[1] M. Brezinski, G. Tearney, B. Bouma,J. Izatt, M. Hee, et al.,“Optical coherence tomography for optical biopsy: properties and demonstration of vascular pathology,” Circulation, Vol. 93, pp. 1206, 1996.
[2] J. Fujimoto, M. Brezinski, G. Tearney, S. Boppart, B. Bouma, et al.,“Optical biopsy and imaging using optical coherence tomography,” Nat. Med., Vol. 1, pp.970-972, 1995.
[3] A. Fercher, K. Mengedoht, and W. Werner, “Eye-length measurement by interferometry with partially coherent light,”Opt. Lett., Vol. 13, pp. 186-188, 1988.
[4] A. Fercher, E. Roth, and G. Muller, “Ophthalmic laser interferometry,”SPIE MILESTONE SERIES MS, Vol. 165, pp. 242-245, 2001.
[5] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, et al.,”Optical coherence tomography,” Science Vol. 254, pp. 1178-1181, 1991.
[6] A. Fercher, C. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,”Am. J. Ophthalmol., Vol. 116, pp.113-114, 1993.
[7] E. Seanson, J. Izatt, M. Hee, D. Huang, C. Lin, et al.,“In vivo retinal imaging by optical coherence tomography,” Opt. Lett., Vol. 18, pp. 1864-1866, 1993.
[8] A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser,“Optical coherence Tomography-principles and applications,” Rep. Prog. Phys., Vol. 66, pp. 239, 2003.
[9] K. Y. Huang, K. Y. Hsu,D. Y. Jheng, W. J. Zhuo, P. Y. Chen, et al.,“Low-loss propagation in Cr4+:YAG double-clad crystal fiber fabricated by sapphire tube assisted CDLHPG technique,”Opt. Express, Vol. 16, pp. 12264-12271, 2008.
[10] C. C. Tsai, T. H. Chen, Y. S. Lin, et al.“Ce3+:YAG double-clad crystal-fiber-based optical coherence tomography on fish cornea”OPTICS LETTERS, Vol. 35, No. 6, 2010.
[11] Robin M. Pope and Edward S. Fry“Absorption spectrum (380-700nm) of pure water. II. Integrating cavity measurements” Applied Optics, Vol. 36, No. 33, pp. 8710-8723, November, 1997
[12] 黃朝紅,“大尺寸無機閃爍晶體Ce3+:YAG的生長和光譜研究,”Journal of synthetic crystals, Vol. 30, No. 4, 2001.
[13] 林晏聖,“以側鍍方法提升四價摻鉻晶體光纖螢光強度之研究,” 碩士 畢業論文, 國立中山大學, 2005.
[14] 劉俊顯,“同色度玻璃螢光體與矽膠色轉換層之可靠度試驗暨平均壽命預測,”國立中山大學, 2011.
[15] 黃光瑤, “摻鉻釔鋁石榴石晶體光纖之超寬頻自發輻射放大光源之研製,” 碩士畢業論文, 國立中山大學, 2003.
[16] S. Tanabe, S. Fujita, S. Yoshihara, A. Sakamoto, and S. Yamamoto,“YAG glass-ceramic phosphor for white LED(II): luminescence characteristics,” Proc. SPIE, 2005.
[17] T. Kano, “Phosphor Handbook,” CRC Press, 1987.
[18] S. Chhajed, Y. Xi, Y. Li, T. Gessmann, and E. Schubert, “Influence of junction temperature on chromaticity and color-rendering properties of trichromatic white-light sources based on light-emitting diodes,”J. Appl. Phys., Vol. 97, pp. 054506, 2005.
[19] J.C. Chen, C.Y. Lo, K.Y. Huang, F.J. Kao. S.Y. Tu, and S.L. Huang, “Fluorescence mapping of oxidation state of Cr ions in YAG crystal fibers,” J. Crystal Growth, Vol. 274, pp. 522-529, 2005.
[20] A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat,“Measyrement of intraocular disrances by backscattering spectral interferometry,”Opt. Commun., Vol. 117, pp. 43-48, 1995.
[21] N. Nassif, B. Cense, B. Hyle Park, S. Yun, T. Chen, et al.,“In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett., Lett., Vol. 29, pp. 480-482, 2004.
[22] M. Wojtkowski, R.Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt., Vol. 7, pp. 457, 2002.
[23] C.C. Lai, H.J. Tsai, K.Y. Huang, K.Y. Hsu, Z.W. Lin, K.D. Ji, W.J. Zhuo, S.L. Huang, “Cr4+:YAG double-clad crystal fiber laser,” Opt. Lett., Vol. 33, pp. 2919-2921, 2008.
[24] Y.C. Huang, Y.K. Lu, J.C. Chen, Y.C. Hsu, Y.M. Huang, S.L. Huang, and W.H. Cheng,“Broadband emission from Cr-doped fibers fabricated by drawing tower,”Opt. Exp., Vol. 14, pp. 8492-8497, 2006.
[25] Y.C. Huang, J.S. Wang, Y.K. Lu, W.K. Liu, K.Y Huang, S.L. Huang, and W.H. Cheng, “Preform fabrication and fiber drawing of 300 nm broadband Cr-doped fibers,”Opt. Exp., Vol. 15, pp. 14382-14388, 2007.
[26] Y.C. Huang, J.S. Wang, Y.S. Lin, T.C. Lin, W.L. Wang, Y.K. Lu, S.M. Yeh, H.H. Kuo, S.L. Huang, and W.H. Cheng, “Development of Broadband Single-mode Cr-Doped Silica Fibers,”IEEE Photon. Technol. Lett., Vol. 22, No. 12, pp. 914-916 , 2010.
[27] GE Quartz, Inc. www.ge.com/quartz.
[28] Cr:YAG crystal rod, Fujian JDSU CASIX Inc., Fujian, China (2005).
[29] S. Ishibashi, K. Naganuma, and I. Yokohama,“Cr,Ca:Y3Al5O12 laser crystal grown by the laser-heated pedestal growth method,” Journal of Crystal Growth, Vol. 183, pp. 614-621, 1998.
[30] X. Feng and S. Tanabe, “Spectroscopy and crystal-field analysis for Cr(IV) in alumino-silicate glasses,”Optical Materials, Vol. 20, pp.63-72, 2002.
[31] S. Ishibashi and K. Naganuma,“Diode-pumped Cr4+:YAG single-crystal fiber laser,” OSA Trends in Optics and Photonics, 34, Advanced Solid-State Lasers, H. Injeyan, U. Keller, and C. Marshall, eds. (Optical Society of America, Washington, DC), pp. 426-430, 2000.
[32] 羅方彥, “管中棒技術之摻鈰光纖製程與特性, ”碩士畢業論文, 國立 中山大學, 2007
[33] OFC 20操作手冊.
[34] Gerd Keiser, “Optical Fiber Communication,” Third Edition, mcgraw-Hill, 2000.
[35] C.A. Murray, and D.H. Van Winkle, “Experimental Observation of Two-Stage Melting in a Classical Two-Dimensional Screened Coulomb System,” Phys. Reeu. Letts., Vol 58, pp. 1200-1203, 1987.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code