Responsive image
博碩士論文 etd-0721115-145645 詳細資訊
Title page for etd-0721115-145645
論文名稱
Title
探討p38與相撲蛋白相互作用區域的位置
Investigation of the SUMO-interacting motif of p38
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
102
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-08
繳交日期
Date of Submission
2015-08-26
關鍵字
Keywords
相撲蛋白-1、p38、相撲蛋白-2、非共價性結合、相撲蛋白相互作用區域
p38, SUMO-interacting motif, non-covalent interaction, SUMO-1, SUMO-2
統計
Statistics
本論文已被瀏覽 5632 次,被下載 0
The thesis/dissertation has been browsed 5632 times, has been downloaded 0 times.
中文摘要
相撲蛋白(small ubiquitin-related modifier, SUMO)是一種轉譯後修飾蛋白(reversible post-translational protein modifier),此修飾作用稱為相撲蛋白修飾化(SUMOylation)。SUMO能夠調控被修飾的蛋白所影響的細胞反應。除了SUMO的共價修飾,SUMO所修飾的蛋白可能擁有相撲蛋白相互作用區域(SUMO-interacting motif, SIM),能夠與SUMO形成非共價性結合(non-covalent interaction)。
p38為絲裂原活化蛋白激酶(mitogen-activated protein kinases, MAPKs)家族的一員,外在的刺激會誘導p38被磷酸化,使活化的p38進入核內。本實驗室之前在AGS細胞的實驗中發現,過度表現RFP-SUMO-1/2會造成內生性的磷酸化p38(p-p38)在核內與RFP-SUMO-1/2座落於同一位置(co-localization),也發現p38無法被SUMO修飾,但在yeast two-hybrid的實驗卻發現p38能夠與SUMO結合,我們假設p38可能擁有SIM。本研究欲辨識出SIM確切的位置,將預測的SIM進行突變,再確認預測的位置是否會影響p38與SUMO的非共價性結合,進而影響p38進核能力與p38調控的細胞凋亡。從免疫細胞化學技術可發現,過度表現的wild type p38與p-p38能夠與RFP-SUMO-1/2座落於同一位置,但單一SIM突變的p38和p-p38也有相同情況,因此我們再進一步確認SIM的位置。以pull-down assay發現三個單一SIM突變的p38,包括:SIM-1*(83/84)、SIM-2*(164/166)或SIM-3*(289/290)皆會減弱與SUMO-1/2的非共價性結合,其中以SIM-3*的影響最顯著,而SUMO-2與p38的結合能力比SUMO-1與p38強。在MTT assay發現,過度表現wild type p38與SUMO-1/2會使細胞存活率下降,三個單一SIM突變的p38則會抑制此細胞存活率的下降。本研究發現p38的SIM-1、SIM-2與SIM-3皆能調控p38與SUMO-1/2的結合,並調控p38訊息傳遞所誘導的細胞凋亡。
Abstract
SUMOylation is a posttranslational modification by the small ubiquitin-related modifier (SUMO), SUMOylation plays important roles in the regulation of diverse cellular processes. SUMO can interact non-covalently with proteins through the SUMO-interacting motif (SIM). The p38 mitogen-activated protein kinases are a class of mitogen-activated protein kinases that are responsive to stress stimuli. The phosphorylation-dependent nuclear translocation of p38 is a common phenomenon when cells are stimulated with various stresses. Our previous studies demonstrated that overexpressing RFP-SUMO-1/2 caused endogenous p-p38 co-localized with RFP-SUMO-1/2 in nuclear. Our previous studies also demonstrated that p38 cannot be SUMOylated, but it can interact with SUMO-1/2 in yeast two-hybrid. We speculated that p38 has SIM. In this study, we focused on identification of the SIM of p38 and whether the SIM regulates the nuclear translocation of p38 and p38-mediated apoptosis. In immunocytochemistry, we found that wild type p38 and p-p38 co-localized with RFP-SUMO-1/2 in nuclear. Single SIM mutant (SIM-1*, SIM-2* and SIM-3*) p38 and p-p38 also co-localized with RFP-SUMO-1/2 in nuclear. In pull-down assay, results indicated that SIM-3 was essential for SUMO-interacting of p38, SIM-1 and SIM-2 also involved in SUMO-interacting of p38, and the interacting through SIM-3 was stronger. Interacting of SUMO-2 to p38 was stronger than interacting of SUMO-1 to p38. In MTT assay, overexpression of wild type p38 and SUMO-1/2 decreased cell survival rate of AGS cells. SIM-1*, SIM-2* and SIM-3* all inhibited the decreases of the cell survival rate caused by the overexpression of p38 and SUMO-1/2. We found that p38 can interact with SUMO-1/2 through the SIM, and SIM mediates the p38-mediated apoptosis of AGS cells.
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
縮寫表 ix
一、緒論 1
1.1 SUMO (small ubiquitin-related modifier) 1
1.1.1 SUMO調控蛋白進核的功能 2
1.1.2 SUMO與PML核體的關係 3
1.1.3 SUMO與細胞凋亡的關係 4
1.2 SUMO-interacting motif (SIM) 5
1.2.1 SUMO-interacting motif (SIM)的功能 7
1.2.2 SUMO-interacting motif (SIM)與細胞凋亡的關係 9
1.3 Mitogen-activated protein kinases (MAPKs) 10
1.4 p38 MAPK 11
1.4.1 p38蛋白家族 12
1.4.2 p38蛋白結構 12
1.4.3 p38的活化與細胞內的位置 14
1.4.4 p38與細胞凋亡的關係 15
1.5 幽門螺旋桿菌與細胞凋亡的關係 17
二、研究目的 18
三、實驗材料與方法 23
3.1 p38突變質體的製備 23
3.1.1 pGEX-KG-p38突變引子的設計 23 
3.1.2 PCR overlap extension mutagenesis 24
3.1.3 DNA電泳分析 27
3.2 DNA cloning 28
3.2.1 Vectors與inserted DNA的限制酶切段與純化 28
3.2.2 Vectors與inserted DNA的接合(ligation) 29
3.2.3 E. coli transformation 30
3.3 製備與純化蛋白質 31
3.3.1 製備蛋白質 31
3.3.2 純化蛋白質 31
3.4 Pull-down assay 33
3.4.1 實驗材料 33
3.4.2 實驗方法 33
3.5 Western blotting 35
3.5.1 實驗材料 35
3.5.2 SDS-PAGE的配製 37
3.5.3 SDS-PAGE方法 37
3.5.4 Western blotting方法 38
3.6 細胞培養 39
3.6.1 實驗材料 39
3.6.2 配置細胞培養液 39
3.6.3 細胞解凍 40
3.6.4 繼代培養(subculture) 40
3.6.5 凍細胞 40
3.7 質體轉殖 42
3.7.1 實驗材料 42 
3.7.2 細胞種植 42
3.7.3 細胞轉殖(cell transfection) 43
3.8 免疫細胞化學技術(Immunocytochemistry, ICC) 44
3.8.1 實驗材料 44
3.8.2 實驗溶液配置 44
3.8.3 細胞染色 44
3.8.4 細胞封片 45
3.9 MTT cell viability assay 46
3.9.1 實驗材料 46
3.9.2 實驗方法 46
四、實驗結果 47
4.1 SUMO-interacting motif (SIM)的預測 47
4.2 SUMO-interacting motif (SIM)對於p38在細胞中位置分布的影響 53
4.3 SUMO-interacting motif (SIM)對於p38與SUMO非共價性結合的影響 61
4.4 SUMO-interacting motif (SIM)對於p38所調控的細胞凋亡的影響 64
五、討論 66

參考文獻 69
附錄 81
參考文獻 References
1. Alvarado-Kristensson M, Melander F, Leandersson K, Rönnstrand L, Wernstedt C, Andersson T. (2004) p38-MAPK signals survival by phosphorylation of caspase-8 and caspase-3 in human neutrophils. J Exp Med. 199(4):449-58.
2. Baba D, Maita N, Jee JG, Uchimura Y, Saitoh H, Sugasawa K, Hanaoka F, Tochio H, Hiroaki H, Shirakawa M. (2005) Crystal structure of thymine DNA glycosylase conjugated to SUMO-1. Nature. 435(7044):979-82.
3. Ben-Levy R, Hooper S, Wilson R, Paterson HF, Marshall CJ. (1998) Nuclear export of the stress-activated protein kinase p38 mediated by its substrate MAPKAP kinase-2. Curr Biol. 8(19):1049-57.
4. Blaser MJ, Perez-Perez GI, Kleanthous H, Cover TL, Peek RM, Chyou PH, Stemmermann GN, Nomura A. (1995) Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer Res. 55(10):2111-5.
5. Borden KL. (2002) Pondering the promyelocytic leukemia protein (PML) puzzle: possible functions for PML nuclear bodies. Mol Cell Biol. 22(15):5259-69.
6. Bulavin DV, Higashimoto Y, Popoff IJ, Gaarde WA, Basrur V, Potapova O, Appella E, Fornace AJ Jr. (2001) Initiation of a G2/M checkpoint after ultraviolet radiation requires p38 kinase. Nature. 411(6833):102-7.
7. Chang CC, Lin DY, Fang HI, Chen RH, Shih HM. (2005) Daxx mediates the small ubiquitin-like modifier-dependent transcriptional repression of Smad4. J Biol Chem. 280(11):10164-73. Epub 2005 Jan 6.
8. Chang CC, Naik MT, Huang YS, Jeng JC, Liao PH, Kuo HY, Ho CC, Hsieh YL, Lin CH, Huang NJ, Naik NM, Kung CC, Lin SY, Chen RH, Chang KS, Huang TH, Shih HM. (2011) Structural and functional roles of Daxx SIM phosphorylation in SUMO paralog-selective binding and apoptosis modulation. Mol Cell. 42(1):62-74. doi: 10.1016/j.molcel.2011.02.022.
9. Chen A, Wang PY, Yang YC, Huang YH, Yeh JJ, Chou YH, Cheng JT, Hong YR, Li SS. (2006) SUMO regulates the cytoplasmonuclear transport of its target protein Daxx. J Cell Biochem. 98(4):895-911.
10. Cuenda A, Cohen P, Buée-Scherrer V, Goedert M. (1997) Activation of stress-activated protein kinase-3 (SAPK3) by cytokines and cellular stresses is mediated via SAPKK3 (MKK6); comparison of the specificities of SAPK3 and SAPK2 (RK/p38). EMBO J. 16(2):295-305.
11. Dérijard B, Raingeaud J, Barrett T, Wu IH, Han J, Ulevitch RJ, Davis RJ. (1995) Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms. Science. 267(5198):682-5.
12. Desterro JM, Rodriguez MS, Kemp GD, Hay RT. (1999) Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1. J Biol Chem. 274(15):10618-24.
13. D'Orazi G, Cecchinelli B, Bruno T, Manni I, Higashimoto Y, Saito S, Gostissa M, Coen S, Marchetti A, Del Sal G, Piaggio G, Fanciulli M, Appella E, Soddu S. (2002) Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis. Nat Cell Biol. 4(1):11-9.
14. Endter C, Kzhyshkowska J, Stauber R, Dobner T. (2001) SUMO-1 modification required for transformation by adenovirus type 5 early region 1B 55-kDa oncoprotein. Proc Natl Acad Sci U S A. 98(20):11312-7. Epub 2001 Sep 11.
15. Engelhardt OG, Boutell C, Orr A, Ullrich E, Haller O, Everett RD. (2003) The homeodomain-interacting kinase PKM (HIPK-2) modifies ND10 through both its kinase domain and a SUMO-1 interaction motif and alters the posttranslational modification of PML. Exp Cell Res. 283(1):36-50.
16. Fu C, Ahmed K, Ding H, Ding X, Lan J, Yang Z, Miao Y, Zhu Y, Shi Y, Zhu J, Huang H, Yao X. (2005) Stabilization of PML nuclear localization by conjugation and oligomerization of SUMO-3. Oncogene. 24(35):5401-13.
17. Geiss-Friedlander R, Melchior F. (2007) Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol. 8(12):947-56.
18. Gong L, Li B, Millas S, Yeh ET. (1999) Molecular cloning and characterization of human AOS1 and UBA2, components of the sentrin-activating enzyme complex. FEBS Lett. 448(1):185-9.
19. Gong X, Ming X, Deng P, Jiang Y. (2010) Mechanisms regulating the nuclear translocation of p38 MAP kinase. J Cell Biochem. 110(6):1420-9. doi: 10.1002/jcb.22675.
20. Guo D, Li M, Zhang Y, Yang P, Eckenrode S, Hopkins D, Zheng W, Purohit S, Podolsky RH, Muir A, Wang J, Dong Z, Brusko T, Atkinson M, Pozzilli P, Zeidler A, Raffel LJ, Jacob CO, Park Y, Serrano-Rios M, Larrad MT, Zhang Z, Garchon HJ, Bach JF, Rotter JI, She JX, Wang CY. (2004) A functional variant of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes. Nat Genet. 36(8):837-41. Epub 2004 Jul 11.
21. Han J, Jiang Y, Li Z, Kravchenko VV, Ulevitch RJ. (1997) Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature. 386(6622):296-9.
22. Han J, Lee JD, Tobias PS, Ulevitch RJ. (1993) Endotoxin induces rapid protein tyrosine phosphorylation in 70Z/3 cells expressing CD14. J Biol Chem. 268(33):25009-14.
23. Hanks SK, Hunter T. (1995) Protein kinases 6 The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J. 9(8):576-96.
24. Hannich JT, Lewis A, Kroetz MB, Li SJ, Heide H, Emili A, Hochstrasser M. (2005) Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. J Biol Chem. 280(6):4102-10. Epub 2004 Dec 6.
25. Hardeland U, Steinacher R, Jiricny J, Schär P. (2002) Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover. EMBO J. 21(6):1456-64.
26. Hayakawa Y, Hirata Y, Kinoshita H, Sakitani K, Nakagawa H, Nakata W, Takahashi R, Sakamoto K, Maeda S, Koike K. (2013) Differential roles of ASK1 and TAK1 in Helicobacter pylori-induced cellular responses. Infect Immun. 81(12):4551-60. doi: 10.1128/IAI.00914-13. Epub 2013 Sep 30.
27. He LZ, Merghoub T, Pandolfi PP. (1999) In vivo analysis of the molecular pathogenesis of acute promyelocytic leukemia in the mouse and its therapeutic implications. Oncogene. 18(38):5278-92.
28. Hecker CM, Rabiller M, Haglund K, Bayer P, Dikic I. (2006) Specification of SUMO1- and SUMO2-interacting motifs. J Biol Chem. 281(23):16117-27. Epub 2006 Mar 8.
29. Hofmann TG, Möller A, Sirma H, Zentgraf H, Taya Y, Dröge W, Will H, Schmitz ML. (2002) Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2. Nat Cell Biol. 4(1):1-10.
30. Huang C, Ma WY, Maxiner A, Sun Y, Dong Z. (1999) p38 kinase mediates UV-induced phosphorylation of p53 protein at serine 389. J Biol Chem. 274(18):12229-35.
31. Ichijo H, Nishida E, Irie K, ten Dijke P, Saitoh M, Moriguchi T, Takagi M, Matsumoto K, Miyazono K, Gotoh Y. (1997) Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science. 275(5296):90-4.
32. Jang MS, Ryu SW, Kim E. (2002) Modification of Daxx by small ubiquitin-related modifier-1. Biochem Biophys Res Commun. 295(2):495-500.
33. Jiang Y, Chen C, Li Z, Guo W, Gegner JA, Lin S, Han J. (1996) Characterization of the structure and function of a new mitogen-activated protein kinase (p38beta). J Biol Chem. 271(30):17920-6.
34. Jiang Y, Gram H, Zhao M, New L, Gu J, Feng L, Di Padova F, Ulevitch RJ, Han J. (1997) Characterization of the structure and function of the fourth member of p38 group mitogen-activated protein kinases, p38delta. J Biol Chem. 272(48):30122-8.
35. Johnson ES, Schwienhorst I, Dohmen RJ, Blobel G. (1997) The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. EMBO J. 16(18):5509-19.
36. Jones NL, Day AS, Jennings HA, Sherman PM. (1999) Helicobacter pylori induces gastric epithelial cell apoptosis in association with increased Fas receptor expression. Infect Immun. 67(8):4237-42.
37. Keates S, Keates AC, Warny M, Peek RM Jr, Murray PG, Kelly CP. (1999) Differential activation of mitogen-activated protein kinases in AGS gastric epithelial cells by cag+ and cag- Helicobacter pylori. J Immunol. 163(10):5552-9.
38. Kelkar N, Standen CL, Davis RJ. (2005) Role of the JIP4 scaffold protein in the regulation of mitogen-activated protein kinase signaling pathways. Mol Cell Biol. 25(7):2733-43.
39. Kerscher O. (2007) SUMO junction-what's your function? New insights through SUMO-interacting motifs. EMBO Rep. 8(6):550-5.
40. Ki MR, Lee HR, Goo MJ, Hong IH, Do SH, Jeong DH, Yang HJ, Yuan DW, Park JK, Jeong KS. (2008) Differential regulation of ERK1/2 and p38 MAP kinases in VacA-induced apoptosis of gastric epithelial cells. Am J Physiol Gastrointest Liver Physiol. 294(3):G635-47. Epub 2007 Dec 20.
41. Kim YH, Choi CY, Kim Y. (1999) Covalent modification of the homeodomain-interacting protein kinase 2 (HIPK2) by the ubiquitin-like protein SUMO-1. Proc Natl Acad Sci U S A. 96(22):12350-5.
42. Kim YH, Choi CY, Lee SJ, Conti MA, Kim Y. (1998) Homeodomain-interacting protein kinases, a novel family of co-repressors for homeodomain transcription factors. J Biol Chem. 273(40):25875-9.
43. Krens SF, Spaink HP, Snaar-Jagalska BE. (2006) Functions of the MAPK family in vertebrate-development. FEBS Lett. 580(21):4984-90. Epub 2006 Aug 28.
44. Kurata JH, Nogawa AN. (1997) Meta-analysis of risk factors for peptic ulcer. Nonsteroidal antiinflammatory drugs, Helicobacter pylori, and smoking. J Clin Gastroenterol. 24(1):2-17.
45. Kyriakis JM, Avruch J. (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev. 81(2):807-69.
46. Lee GW, Melchior F, Matunis MJ, Mahajan R, Tian Q, Anderson. (1998) Modification of Ran GTPase-activating protein by the small ubiquitin-related modifier SUMO-1 requires Ubc9, an E2-type ubiquitin-conjugating enzyme homologue. J Biol Chem. 273(11):6503-7.
47. Lee JC, Laydon JT, McDonnell PC, Gallagher TF, Kumar S, Green D, McNulty D, Blumenthal MJ, Heys JR, Landvatter SW, et al. (1994) A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature. 372(6508):739-46.
48. Lewis TS, Shapiro PS, Ahn NG. (1998) Signal transduction through MAP kinase cascades. Adv Cancer Res. 74:49-139.
49. Li H, Leo C, Zhu J, Wu X, O'Neil J, Park EJ, Chen JD. (2000) Sequestration and inhibition of Daxx-mediated transcriptional repression by PML. Mol Cell Biol. 20(5):1784-96.
50. Li X, Zhang R, Luo D, Park SJ, Wang Q, Kim Y, Min W. (2005) Tumor necrosis factor alpha-induced desumoylation and cytoplasmic translocation of homeodomain-interacting protein kinase 1 are critical for apoptosis signal-regulating kinase 1-JNK/p38 activation. J Biol Chem. 280(15):15061-70. Epub 2005 Feb 8.
51. Li Z, Jiang Y, Ulevitch RJ, Han J. (1996) The primary structure of p38 gamma: a new member of p38 group of MAP kinases. Biochem Biophys Res Commun. 228(2):334-40.
52. Lin DY, Huang YS, Jeng JC, Kuo HY, Chang CC, Chao TT, Ho CC, Chen YC, Lin TP, Fang HI, Hung CC, Suen CS, Hwang MJ, Chang KS, Maul GG, Shih HM. (2006) Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Mol Cell. 24(3):341-54.
53. Liu XM, Yang FF, Yuan YF, Zhai R, Huo LJ. (2013) SUMOylation of mouse p53b by SUMO-1 promotes its pro-apoptotic function in ovarian granulosa cells. PLoS One. 8(5):e63680. doi: 10.1371/journal.pone.0063680. Print 2013.
54. Mahajan R, Delphin C, Guan T, Gerace L, Melchior F. (1997) A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell. 88(1):97-107.
55. Matsuzawa A, Saegusa K, Noguchi T, Sadamitsu C, Nishitoh H, Nagai S, Koyasu S, Matsumoto K, Takeda K, Ichijo H. (2005) ROS-dependent activation of the TRAF6-ASK1-p38 pathway is selectively required for TLR4-mediated innate immunity. Nat Immunol 6(6):587-92. Epub 2005 May 1.
56. Matunis MJ, Coutavas E, Blobel G. (1996) A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J Cell Biol. 135(6 Pt 1):1457-70.
57. Mauri F, McNamee LM, Lunardi A, Chiacchiera F, Del Sal G, Brodsky MH, Collavin L. (2008) Modification of Drosophila p53 by SUMO modulates its transactivation and pro-apoptotic functions. J Biol Chem. 283(30):20848-56. doi: 10.1074/jbc.M710186200. Epub 2008 May 20.
58. Melchior F. (2000) SUMO--nonclassical ubiquitin. Annu Rev Cell Dev Biol. 16:591-626.
59. Minty A, Dumont X, Kaghad M, Caput D. (2000) Covalent modification of p73alpha by SUMO-1. Two-hybrid screening with p73 identifies novel SUMO-1-interacting proteins and a SUMO-1 interaction motif. J Biol Chem. 275(46):36316-23.
60. Miyashita T, Reed JC. (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell. 80(2):293-9.
61. Moss SF, Sordillo EM, Abdalla AM, Makarov V, Hanzely Z, Perez-Perez GI, Blaser MJ, Holt PR. (2001) Increased gastric epithelial cell apoptosis associated with colonization with cagA + Helicobacter pylori strains. Cancer Res. 61(4):1406-11.
62. Muller S, Berger M, Lehembre F, Seeler JS, Haupt Y, Dejean A. (2000) c-Jun and p53 activity is modulated by SUMO-1 modification. J Biol Chem. 275(18):13321-9.
63. Okuma T, Honda R, Ichikawa G, Tsumagari N, Yasuda H. (1999) In vitro SUMO-1 modification requires two enzymatic steps, E1 and E2. Biochem Biophys Res Commun. 254(3):693-8.
64. Parsonnet J. (1998) Helicobacter pylori: the size of the problem. Gut. 43 Suppl 1:S6-9.
65. Pisani P, Parkin DM, Muñoz N, Ferlay J. (1997) Cancer and infection: estimates of the attributable fraction in 1990. Cancer Epidemiol Biomarkers Prev. 6(6):387-400.
66. Porras A, Zuluaga S, Black E, Valladares A, Alvarez AM, Ambrosino C, Benito M, Nebreda AR. (2004) P38 alpha mitogen-activated protein kinase sensitizes cells to apoptosis induced by different stimuli. Mol Biol Cell. 15(2):922-33. Epub 2003 Nov 14.
67. Potthoff A, Ledig S, Martin J, Jandl O, Cornberg M, Obst B, Beil W, Manns MP, Wagner S. (2002) Significance of the caspase family in Helicobacter pylori induced gastric epithelial apoptosis. Helicobacter. 7(6):367-77.
68. Quimby BB, Yong-Gonzalez V, Anan T, Strunnikov AV, Dasso M. (2006) The promyelocytic leukemia protein stimulates SUMO conjugation in yeast. Oncogene. 25(21):2999-3005.
69. Raingeaud J, Gupta S, Rogers JS, Dickens M, Han J, Ulevitch RJ, Davis RJ. (1995) Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J Biol Chem. 270(13):7420-6.
70. Remy G, Risco AM, Iñesta-Vaquera FA, González-Terán B, Sabio G, Davis RJ, Cuenda A. (2010) Differential activation of p38MAPK isoforms by MKK6 and MKK3. Cell Signal. 22(4):660-7. doi: 10.1016/j.cellsig.2009.11.020. Epub 2009 Dec 11.
71. Robinson MJ, Cobb MH. (1997) Mitogen-activated protein kinase pathways. Curr Opin Cell Biol. 9(2):180-6.
72. Saitoh H, Hinchey J. (2000) Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem. 275(9):6252-8.
73. Schaeffer HJ, Weber MJ. (1999) Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol. 19(4):2435-44.
74. Seeler JS, Dejean A. (2003) Nuclear and unclear functions of SUMO. Nat Rev Mol Cell Biol. 4(9):690-9.
75. Shen TH, Lin HK, Scaglioni PP, Yung TM, Pandolfi PP. (2006) The mechanisms of PML-nuclear body formation. Mol Cell. 24(3):331-9.
76. Slomiany BL, Slomiany A. (2002) Disruption in gastric mucin synthesis by Helicobacter pylori lipopolysaccharide involves ERK and p38 mitogen-activated protein kinase participation. Biochem Biophys Res Commun. 294(2):220-4.
77. Song J, Durrin LK, Wilkinson TA, Krontiris TG, Chen Y. (2004) Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc Natl Acad Sci U S A. 101(40):14373-8. Epub 2004 Sep 23.
78. Steinacher R, Schär P. (2005) Functionality of human thymine DNA glycosylase requires SUMO-regulated changes in protein conformation. Curr Biol. 15(7):616-23.
79. Sternsdorf T, Jensen K, Will H. (1997) Evidence for covalent modification of the nuclear dot-associated proteins PML and Sp100 by PIC1/SUMO-1. J Cell Biol. 139(7):1621-34.
80. Sung KS, Lee YA, Kim ET, Lee SR, Ahn JH, Choi CY. (2011) Role of the SUMO-interacting motif in HIPK2 targeting to the PML nuclear bodies and regulation of p53. Exp Cell Res. 317(7):1060-70. doi: 10.1016/j.yexcr.2010.12.016. Epub 2010 Dec 28.
81. Takahashi H, Hatakeyama S, Saitoh H, Nakayama KI. (2005) Noncovalent SUMO-1 binding activity of thymine DNA glycosylase (TDG) is required for its SUMO-1 modification and colocalization with the promyelocytic leukemia protein. J Biol Chem. 280(7):5611-21. Epub 2004 Nov 29.
82. Tanoue T, Adachi M, Moriguchi T, Nishida E. (2000) A conserved docking motif in MAP kinases common to substrates, activators and regulators. Nat Cell Biol. 2(2):110-6.
83. Tatham MH, Kim S, Jaffray E, Song J, Chen Y, Hay RT. (2005) Unique binding interactions among Ubc9, SUMO and RanBP2 reveal a mechanism for SUMO paralog selection. Nat Struct Mol Biol. 12(1):67-74. Epub 2004 Dec 19.
84. Trouillas M, Saucourt C, Duval D, Gauthereau X, Thibault C, Dembele D, Feraud O, Menager J, Rallu M, Pradier L, Boeuf H. (2008) Bcl2, a transcriptional target of p38alpha, is critical for neuronal commitment of mouse embryonic stem cells. Cell Death Differ. 15(9):1450-9. doi: 10.1038/cdd.2008.63. Epub 2008 Apr 25.
85. Um JW, Chung KC. (2006) Functional modulation of parkin through physical interaction with SUMO-1. J Neurosci Res. 84(7):1543-54.
86. Wang Z, Harkins PC, Ulevitch RJ, Han J, Cobb MH, Goldsmith EJ. (1997) The structure of mitogen-activated protein kinase p38 at 2.1-A resolution. Proc Natl Acad Sci U S A. 94(6):2327-32.
87. Waskiewicz AJ, Flynn A, Proud CG, Cooper JA. (1997) Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J. 16(8):1909-20.
88. Weis K, Rambaud S, Lavau C, Jansen J, Carvalho T, Carmo-Fonseca M, Lamond A, Dejean A. (1994) Retinoic acid regulates aberrant nuclear localization of PML-RAR alpha in acute promyelocytic leukemia cells. Cell. 76(2):345-56.
89. Wilson KP, Fitzgibbon MJ, Caron PR, Griffith JP, Chen W, McCaffrey PG, Chambers SP, Su MS. (1996) Crystal structure of p38 mitogen-activated protein kinase. J Biol Chem. 271(44):27696-700.
90. Wood CD, Thornton TM, Sabio G, Davis RA, Rincon M. (2009) Nuclear localization of p38 MAPK in response to DNA damage. Int J Biol Sci. 5(5):428-37.
91. Xu Y, Liao R, Li N, Xiang R, Sun P. (2014) Phosphorylation of Tip60 by p38α regulates p53-mediated PUMA induction and apoptosis in response to DNA damage. Oncotarget. 5(24):12555-72.
92. Zarubin T, Han J. (2005) Activation and signaling of the p38 MAP kinase pathway. Cell Res. 15(1):11-8.
93. Zehorai E, Seger R. (2014) Beta-like importins mediate the nuclear translocation of mitogen-activated protein kinases. Mol Cell Biol. 34(2):259-70. doi: 10.1128/MCB.00799-13. Epub 2013 Nov 11.
94. Zhao M, New L, Kravchenko VV, Kato Y, Gram H, di Padova F, Olson EN, Ulevitch RJ, Han J. (1999) Regulation of the MEF2 family of transcription factors by p38. Mol Cell Biol. 19(1):21-30.
95. Zhong S, Müller S, Ronchetti S, Freemont PS, Dejean A, Pandolfi PP. (2000) Role of SUMO-1-modified PML in nuclear body formation. Blood. 95(9):2748-52.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.222.148.124
論文開放下載的時間是 校外不公開

Your IP address is 18.222.148.124
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code