Responsive image
博碩士論文 etd-0721115-163333 詳細資訊
Title page for etd-0721115-163333
論文名稱
Title
探討汞汙染土壤之化學淋洗與生物復育技術
Studies on chemical leaching and bioremediation of mercury polluted soil
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
111
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-20
繳交日期
Date of Submission
2015-08-21
關鍵字
Keywords
汞、merA 基因、誘導、化學淋洗、生物復育
mercury, merA gene, chemical leaching, bioremediation, induction
統計
Statistics
本論文已被瀏覽 5748 次,被下載 0
The thesis/dissertation has been browsed 5748 times, has been downloaded 0 times.
中文摘要
汞還原菌B37、A45、A46篩選自同時含有汞、五氯酚、戴奧辛等之某台灣南部汙染場址。B37菌鑑定為Enterobacter cloacae、A45菌與A46菌則為Pseudomonas sp.。先前研究發現三株菌皆可在海水鹽度 (3.5%)下生長良好。經過PCR以及DNA序列定序證實三株菌皆含有merA 基因,並可表現出汞還原酶(Mercuric reductase, MerA),除了具有汞耐受性外,亦證實具有還原降解汞離子的能力。本研究更進一步將之實際施用於汙染整治。汞還原菌僅能處理游離於水溶液中的汞離子,故利用淋洗劑以幫助吸附在土壤粒子上之汞離子脫出。淋洗劑通過三株汞還原菌之耐受性測試後,以不同濃度與淋洗時間做測試,挑選出最佳淋洗條件,接著搭配汞還原菌處理。在微生態系統(Microcosm)的降解測試中,0.3M硫代硫酸銨淋洗24小時後,接續以三株汞還原菌處理24小時,發現對土壤有62.5%,對淋洗液有79.18%的降解效果。merA基因誘導劑的測定實驗中,各菌株分別以不同濃度之氯化鎂、氯化鈣、氯化鋅加以誘導,再以real time PCR檢測merA 基因表現量。結果顯示三株菌在650mg/L、1300mg/L鎂離子時,200 mg/L、400mg/L鈣離子時均有不錯的誘導表現。而添加氯化鋅反而有抑制的現象。從誘導前後的基因表現變化倍率來看,效果最顯著的是以650mg/L鎂離子誘導A45菌,其merA基因表現高達基礎表現量的12.28倍。而以200mg/L鈣離子誘導A45菌,其merA基因表現高達基礎表現量的11.13倍。綜合以上條件在微生態系統中進行測試,在0.3M硫代硫酸銨淋洗24小時,接續添加650mg/L鎂離子及200mg/L鈣離子誘導後以三株汞還原菌處理24小時的條件下,土壤汞離子的降解效果為26%。本實驗結合化學淋洗與生物復育法,提供一個較低耗能的可行方式來處理汞汙染土壤。
Abstract
Three mercury resistant bacteria strains were isolated from a mercury polluted site located in Southern Taiwan. The B37 strain is closely related to Enterobacter cloacae while A45 and A46 are associated with Pseudomonas sp. In previous studies, the existence of merA gene in these strains where confirmed by RT-PCR and real time PCR. The ability of mercury ion reduction by these three strains was also approved by microcosm studies. The objective of this study was to apply these three mercury resistant bacteria combined with chemical leaching pretreatment to remediate mercury contaminated soils. Chemical leaching compounds were added into growth media to test the inhibition effect on the growth of these 3 strains. Result showed that ammonium thiosulfate and sodium thiosulfate had comparatively less affection to the growth of bacteria, therefore were used in the following experiments. Microcosm studies exhibited that soil leaching by 0.3M ammonium thiosulfate for 24 hours then followed by the treatment of three mercury resistant bacteria resulted the best removal rete, 62.5% for the soil and 79.18% for the leachate. Calcium chloride, magnesium chloride, and zinc chloride were tested for the induction effect of the merA gene. From real time PCR analysis, the expression of merA gene was induced prominently by Mg2+ (650mg/L and 1300mg/L) and Ca2+ (200 mg/L and 400mg/L). The best induction effect was 650mg/L Mg2+ (12.28 folds) and 200 mg/L Ca2+ (11.13 folds) for A45 strain. A final microcosm study consisted all of the optimum conditions was performed. Result showed the mercury removal rate for the soil was 26%. This study provides a feasible way to treat mercury contaminated soils by a process of combined of chemical leaching with bioremediation.
目次 Table of Contents
圖目錄 vii
表目錄 viii
第一章 緒論 1
1.1 研究緣起 1
1.2 汞簡介 2
1.3 汞的毒理特性 4
1.4汞於國內外之管制現況 7
1.5汞汙染的土壤整治技術 10
1.6 微生物還原汞離子之mer基因組 13
1.7基因誘導物 13
1.8微生態系統研究(Microcosm study) 14
1.9 研究目的 15
第二章 實驗材料與方法 17
2.1 實驗材料與儀器設備 17
2.2 試驗土壤之採集與預處理 20
2.3 土壤基本性質測定 21
2.4 汞還原菌對各淋洗劑耐受性測試 22
2.5 不同條件對淋洗效果的影響測試 23
2.6 淋洗後以汞還原菌處理之效果測試 25
2.7 merA基因誘導劑能力測定 26
2.8淋洗後結合誘導三株汞還原菌處理之效果測試 35
2.9 汞消化萃取與檢測方法 36
第三章 結果與討論 39
3.1 土壤基本性質測定 39
3.2 汞還原菌對各淋洗劑耐受性測試 41
3.3 不同條件對淋洗效果的影響測試 43
3.4 淋洗後以汞還原菌處理之效果測試 44
3.5 merA基因誘導劑能力測定 45
3.6淋洗後結合誘導三株汞還原菌處理之效果測試 49
第四章 結論與建議 50
4.1 結論 50
4.2 建議 52
參考文獻 53
參考文獻 References
日本環境省( 2013 ) 水銀に関する水俣条約の概要。2015年07月14日,取自https://www.env.go.jp/chemi/tmms/convention.html.
日本外務省( 2013 ) 水銀に関する水俣条約。2015年07月14日,取自http://www.mofa.go.jp/mofaj/ila/et/page22_001867.html.
台南市環境保護局(2015)。2015年07月05日,取自http://epb3.tainan.gov.tw/cpdc/ch/mode03.asp?m=201410281638401&t=sub
台南市環境保護局(2013)中石化安順廠污染防治手冊。2015年07月05日,取自http://epb3.tainan.gov.tw/cpdc/ch/upload/Case120120521132723.pdf
行政院勞工委員會GHS化學品全球調和制度(2010)危害物質危害數據資料。2015年07月19日,取自http://ghs.cla.gov.tw/CHT/intro/
search.aspx?cssid=3。
行政院環境保護署環境檢驗所(2006)水中汞檢測方法-冷蒸氣原子
吸收光譜法 (NIEA W330.52A)。2015年07月19日,取自http://
www.niea.gov.tw/niea/WATER/W33052A.htm。
行政院環境保護署(2012)五氯酚 (Pentachlorophenol)。2015年07月19日,取自http://www.epa.gov.tw/ch/aioshow.aspx?busin=324&path=
1900&guid=0f113f7e-801a-4195-9845-8af0aab8e48e&lang=zh-tw。
邢德峰、任南琪、宋佳秀、曲敏、徐香玲(2006)不同16S rDNA靶序列對DGGE分析活性汙泥群落的影響。環境科學27:1424-1428。
行政院環境保護署(2012)汞製品簡介。2015年07月19日,取自http://ivy4.epa.gov.tw/hgbat/PublicPage/P01.htm。
李福臨(2012)16S rRNA基因序列比對在國人細菌鑑定上之應用現況。生物資源保存及研究簡訊 90:2-6。
李錦地、王松賓(1978)汞在台灣的使用情形及其汙染之防治,科學月刊 108:63-65。
李嘉原(2013)耐汞菌株的篩選與特性分析。國立中山大學生物科學系碩士論文。
林海龍、李偉光、閆險峰、任南琪(2011)中藥廢水汙泥群落結構解析中PCR-DGGE引物的選擇與評價。環境科學32:1505-1510。
徐統(2009)汞。科學發展436:60-65。
張添晉(2010)國內含汞產品之流布與管理。永續產業發展雙月刊no.48:68-67。
勞工安全衛生研究所(2009)物質安全資料表。2015年07月19日,取自http://www.iosh.gov.tw/publish.aspx?cnid=25。
黃煥彰(2002)失落的記憶 ─ 台鹼安順廠的汙染,看守台灣季刊 4:80-87。
楊琬渝(2008)重油分解菌之分離鑑定與降解能力探討。國立中山大學生物科學系碩士論文。
劉鎮宗(1995)汞對生態環境的影響。科學月刊 301:41-46。
鄭森雄、許鐘榮(1977)水俁病。科學月刊 87:37-42。
謝宗恩(2014)以乳化油淋洗結合生物降解處理受戴奧辛汙染之土壤。國立中山大學環境工程研究所碩士論文。
Amann RI, Ludwig W, Schleifer KH. (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59: 143-169.
Applied Biosystems. (2001) Primer Express® Applications-Based Primer Design Software Applications Tutorials.
ATSDR (The Agency for Toxic Substances and Disease Registry). (1999) Toxicological profile for mercury. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
Banchuen T. (2002) A microcosm-based investigation into oxidized nitrogen removal in the hypolimnetic waters of the Occoquan Reservoir of Northern Virginia. Master's thesis, Virginia Polytechnic Institute and State University, Virginia.
Bano N. and Hollibaugh JT. (2002) Phylogenetic composition of bacterioplankton assemblages from the Arctic Ocean. Appl Environ Microbiol 68: 505-518.
Barkay T., Miller SM, Summers AO. (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27: 355-384.
Belliveau BH. and Trevors JT. (1989) Mercury resistance and detoxification in bacteria. Appl Organomet Chem 3: 283-294.
BIO-RAD. (1996) THE DCODE™ UNIVERSAL MUTATION DETECTION SYSTEM. Bio-Rad Laboratories.
Bizily SP., Rugh CL., Summers AO, Meagher RB. (1999) Phytoremediation of methylmercury pollution: merB expression in Arabidopsis thaliana confers resistance to organomercurials. Proc Nati Acad Sci USA 96: 6808-6813.
Broussard LA, Hammett-Stabler CA, Winecker RE, Ropero-Miller JD. (2002) The toxicology of mercury. Lab Med 33: 614-625.
Brown NL, Stoyanov JV, Kidd SP, Hobman JL. (2003) The MerR family of transcriptional regulators. FEMS Microbiol Rev 27: 145-163.
Bustin SA. (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25: 169-193.
Busto Y, Cabrera X, Tack FMG, Verloo MG. (2011) Potential of thermal treatment for decontamination of mercury containing wastes from chlor-alkali industry. J Hazard Mater 186: 114-118.
Cappuccino JG and Sherman N. (2008) Microbiology: A Laboratory Manual 8th ed. USA: Benjamin/Cummings Publishing Company.
Chadhain SMN, Schaefer JK, Crane S, Zylstra GJ, Barkay T. (2006) Analysis of mercuric reductase (merA) gene diversity in an anaerobic mercury-contaminated sediment enrichment. Environ Microbiol 8: 1746 - 1752.
Champier L, Duarte V, Michaud-Soret I, Cove`s J. (2004) Characterization of the MerD protein from Ralstonia metallidurans CH34: a possible role in bacterial mercury resistance by switching off the induction of the mer operon. Mol Microbiol 52: 1475-1485.
Chang JS, Hong J, Ogunseitan OA, Olson BH. (1993) Interaction of mercuric ions with the aacterial growth medium and its effects on enzymatic reduction of mercury. Blotechnol Prog 9: 526-532.
Chang JS, Law WS. (1998) Development of microbial mercury detoxification processes using mercury-hyperresistant strain of pseudomonas aeruginosa pu21. Biotechnol Bioeng 57: 464-470.
Compeau GC and Bartha R. (1985) Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment. Appl Environ Microbiol 50: 498-502.
Conner JC. (1990) Chemical Fixation and Solidification of Hazardous Wastes. New York: Van Nostrand Reinhold.
Dean JD, Goodwin PH, Hsiang T. (2002) Comparison of relative RT-PCR and northern blot analyses to measure expression of b-1, 3-glucanase in Nicotiana benthamiana infected with Colletotrichum destructivum. Plant Mol Biol Rep 20: 347-356.
Essa AMM, Macaskie LE, Brown NL. (2005) A new method for mercury removal. Biotechnol Letts 27: 1649-1655.
Farmer 3rd JJ, Davis BR, Hickman-Brenner FW, McWhorter A, Huntley-Carter GP, Asbury MA, Riddle C, Wathen-Grady HG, Elias C, Fanning GR. (1985) Biochemical identification of new species and biogroups of Enterobacteriaceae isolated from clinical specimens. J Clin Microbiol 21: 46-76.
Feldman C. (1974) Preservation of dilute mercury solutions. Anal Chem 46: 99-102.
Fernández-Delgado M, Contreras M, García-Amado MA, Gueneau P, Suárez P. (2007) Occurrence of Proteus mirabilis associated with two species of Venezuelan oysters. Rev Inst Med trop S Paulo 49: 355-359.
Fox B and Walsh CT. (1982) Mercuric reductase. Purification and characterization of a transposon-encoded flavoprotein containing an oxidation-reduction-active disulfide. J Biol Chem 257: 2498-2503.
Fox GE, Stackebrandt E, Hespell RB, Gibson J, Maniloff J, Dyer TA, Wolfe RS, Balch WE, Tanner RS, Magrum LJ, Zablen LB, Blakemore R, Gupta R, Bonen L, Lewis BJ, Stahl DA, Luehrsen KR, Chen KN, Woese CR. (1980) The phylogeny of prokaryotes. Science 209: 457-463.
Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T, Feil EJ, Stackebrandt E, Van de Peer Y, Vandamme P, Thompson FL, Swings J. (2005) Opinion: Re-evaluating prokaryotic species. Nat Rev Microbiol 3: 733-739.
Global Environment Centre Fundation (GEC) 水蒸気加熱法による汚染土壌浄化。Retrieved July 12, 2013 form http://nett21.gec.jp/SGC_DATA/JP/html/sgcj-054.html.
Goldberg L. (1996) A history of pest control measures in the anthropology collections, national museum of natural history, Smithsonian Institution. JAIC 35: 23-43.
Greenwood MR and Clarkson TW. (1970) Storage of mercury at submolar concentrations. Am Znd Hyg Assoc J 31: 250-251.
Hansen CL ZG, Martin D, Williams JW. (1984) Bacterial removal of mercury from sewage. Biotechnol Bioeng 26: 1330-1333.
Harnett G and Effler SW. (1996) Limnological and Engineering Analysis of a Polluted Urban Lake: Prelude to Environmental Management of Onondaga Lake. New York: Springer.
Hugh R and Leifson E. (1953) The taxonomic significance of fermentative versus oxidative Gram-negative bacteria. J Bacteriol 66: 24-26.
ITRC. (1998) Technical Guidelines for On-Site Thermal Desorption of Solid Media and Low Level Mixed Waste Contaminated with Mercury and/or Hazardous Chlorinated Organics Final Report, ITRC Work Team of Low Temperature Thermal Desorption, Washington, DC.
Jackson WJ and Summers AO. (1982) Biochemical characterization of HgCl2-inducible polypeptides encoded by the mer operon of plasmid R 100. J Bacteriol 151: 962-970.
Jenne EA and Avotins P. (1975) The time stability of dissolved mercury in water samples-I. literature review. J Environ Qual 4: 427-431.
Jensen S and Jernelöv A. (1969) Biological methylation of mercury in aquatic organisms. Nature 223: 753-754.
Jin X, Yue S, Wells KS, Singer VL. (1994) SYBR™ Green I: a new fluorescent dye optimized for detection of picogram amounts of DNA in gels. Biophys J 66: A159.
Kiyono M, Sone Y, Nakamura R, Pan-Hou H, Sakabe K. (2009) The MerE protein encoded by transposon Tn21 is a broad mercury transporter in Escherichia coli. FEBS Lett 583: 1127-1131.
Kulkarni RD and Summers AO. (1999) MerR cross-links to the α, β, and σ70 subunits of RNA polymerase in the preinitiation complex at the merTPCAD promoter. Biochemistry 38: 3362-3368.
Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR. (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA 82: 6955-6959.
Leach J.(1960) The reaction of thiol and disulphide groups with mercuric chloride and methylmercuric iodide. J Aust Chem SOC 13: 520-546.
Liebert CA WJ, Smith T, Summers AO. (1997) Phylogeny of mercury resistance (mer) operons of gram-negative bacteria isolated from the fecal flora of primates. Appl Environ Microbiol 63: 1066-1076.
Luo P, Hu CQ, Zhang LP, Ren CH, Shen Q. (2007) Effects of DNA extraction and universal primers on 16S rRNA gene-based DGGE analysis of a bacterial community from fish farming water. Chin J Oceanol Limnol 25: 310-316.
Machtelinckx T, van Leeuwen T, Van De Wiele T, Boon N, De Vos W, Sanchez J-A, Nannini M, Gheysen G, De Clercq P. (2012) Microbial community of predatory bugs of the genus Macrolophus (Hemiptera: Miridae). BMC Microbiology 12: Suppl 1, S9.
Manson MJ, Rauch M, Gilmore MS. (2008) The commensal microbiology of the gastrointestinal tract. Adv Exp Med Biol 635: 15-28.
Misra TK. (1992) Bacterial resistance to inorganic mercury salts and organomercurials. Plasmid 27: 4-16.
Mitra S. (1986) Mercury in the ecosystem: its dispersion and pollution today. Switzerland: Trans Tech Publications.
Moore MJ, Distefano MD, Zydowsky LD, Cummings RT, Walsh CT. (1990) Organomercurial lyase and mercuric ion reductase: nature’s mercury detoxification catalysts. Acc Chem Res 23: 301-308.
Morris MI, Sams RJ, Gillis G, Helsel RW, Alperin ES, Geisler TJ, Groen A, Root D. (1995) Bench- and pilot-scale demonstration of thermal desorption for removal of mercury from the Lower East Fork Poplar Creek floodplain soils. Internal Report No. CONF-950216-129. Oak Ridge, TN: Martin Marietta Energy Systems.
Muyzer G, Dewaal EC, Uitterlinden AG. (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16s rRNA. Appl Environ Microbiol 59: 695-700.
Myers RM, Fischer SG, Lerman LS, Maniatis T. (1985) Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis. Nucleic Acids Res 13: 3131-3145.
Myers RM, Maniatis T, Lerman LS. (1987) Detection and localization of single base changes by denaturing gradient gel electrophoresis. Methods Enzymol 155: 501-527.
Ni’Bhriain NN, Silver S, Foster TJ. (1983) Tn5 insertion mutations in the mercuric ion resistance genes derived from plasmid R100. J Bacteriol 155: 690-703.
Noyes OR, Hamdy MK, Muse LA. (1976) Control of mercury pollution. J Toricol Environ Health 1: 409-420.
NTP (National Toxicology Program) (1993) Toxicology and carcinogenesis studies of mercuric chloride (CAS No. 7487-94-7) in F344 rats and B3C3F1 mice (gavage studies). NTP Technical Report Series No. 408. National Toxicology Program, U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Research Triangle Park, NC.
Nübel U, Engelen B, Felske A, Snaidr J, Wieshuber A, Amann RI, Ludwig W, Backhaus HH. (1996) Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol 178: 5636-5643.
Oaks JA. (1999) Nails and Railroad Tie Preservation. Archeology and Forensics Laboratory, University of Indianapolis 3: 19-75.
Okino S, Iwasaki K, Yagi O, Tanaka H. (2000) Development of a biological mercury removal-recovery system. Biotechnol Lett 22: 783-788.
Permina EA, Kazakov AE, Kalinina OV, Gelfand MS. (2006) Comparative genomics of regulation of heavy metal resistance in Eubacteria. BMC Microbiol 6: 49-60.
Piao H and Bishop PL. (2006) Stabilization of mercury-containing wastes using sulfide. Environ Pollut 139: 498-506.
Pitts KE and Summers AO. (2002) The roles of thiols in the bacterial organomercurial lyase (MerB). Biochemistry 41: 10287.
Prapagdee B, Kuekulvong C, Mongkolsuk S. (2008) Antifungal potential of extracellular metabolites produced by Streptomyces hygroscopicus against phytopathogenic fungi. Int J Biol Sci 4: 330-337.
Qvarfort-Dahlman I. (1975) On some phosphate equilibria. VI. The systems Hg(I)- and Hg(II)-phosphoric acid in 3 M NaClO4. Chemica Scripta 8: 112.
Ramamoorthy S and Kushner DJ. (1975) Binding of mercuric and other heavy metal ions by microbial growth media. Microb Ecol 2: 162-176.
Rieser LA, Bishop P, Suidan MT, Piao H, Fauche RA, Zhang J, Randall P. (2001) Stabilization and Testing of Mercury Containing Wastes: Borden Catalyst EPA/600/R-02/019 U.S EPA National Risk Management Research Laboratory/Office of Research and Development, Cincinnati/Ohio.
Ritalahti KM, Amos BK, Sung Y, Wu Q, Koenigsberg SS, Löffler FE. (2006) Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains. Appl Environ Microbiol 72: 2765-2774.
Rojas LA, Yáñez C, González M, Lobos S, Smalla K, Seeger M. (2011) Characterization of the metabolically modified heavy metal-resistant cupriavidus metallidurans strain MSR33 generated for mercury bioremediation. PLoS ONE 6: 1-10.
Schaefer JK YJ, Reinfelder JR, Cardona T, Ellickson KM, Tel-Or S, Barkay T. (2004) Role of the bacterial organomercury lyase (merB) in controlling methylmercury accumulation in mercury-contaminated natural waters. Environ Sci Technol 38: 4304-4311.
Schmittgen TD, Zakrajsek BA, Mills AG, Gorn V, Singer MJ, Reed MW. (2000) Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: Comparison of endpoint and real-time methods Anal Biochem 285: 194-204.
Sheffield VC, Cox DR, Lerman LS, Myers RM. (1989) Attachment of a 40-base-pair G+C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc Natl Acad Sci USA 86: 232–236.
Silver S and Phung LT. (2005) A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J Ind Microbiol Biotechnol 32: 587-605.
Singer VL, Lawlor TE, Yue S. (1999) Comparison of SYBR Green I nucleic acid gel stain mutagenicity and ethidium bromide mutagenicity in the Salmonella/mammalian microsome reverse mutation assay (Ames test). Mutation Research 439: 37-47.
Skurnik D, Ruimy R, Ready D, Ruppe E, Bernède-Bauduin C, Djossou F, Guillemot D, Pier GB, Andremont A. (2010) Is exposure to mercury a driving force for the carriage of antibiotic resistance genes?. J Med Microbiol 59: 804-807.
Stackebrandt E and Goebel BM. (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44: 846-849.
Stiles ME and Ng LK. (1981) Biochemical characteristics and identification of Enterobacteriaceae isolated from meats. Appl Environ Microbiol 41: 639.
Sullivan Jr., John B, Krieger, Gary R. (2001) Clinical Environmental Health and Toxic Exposures:867-879.
Tennant SM, Skinner NA, Joe A, Robins-Browne RM. (2005) Homologues of insecticidal toxin complex genes in Yersinia enterocolitica biotype 1A and their contribution to virulence. Infect Immun 73: 6860-6867.
Tuma RS, Beaudet MP, Jin X, Jones LJ, Cheung CY, Yue S, Singer VL. (1999) Characterization of SYBR® Gold nucleic acid gel stain: a dye optimized for use with 300- nm ultraviolet transilluminators. Anal Biochem 268: 278-288.
Tyler S. Radniecki, Lewis Semprini, Mark E. Dolan. (2008) Expression of merA, amoA and hao in Continuously Cultured Nitrosomonas europaea Cells Exposed to Zinc Chloride Additions. Biotechnology and Bioengineering, Vol. 102, No. 2, February 1, 2009: 546-553.
Ullrich SM, Tanton TW, Abdrashitova SA. (2001) Mercury in the aquatic environment: a review of factors affecting methylation". Crit Rev Environ Sci Tech 31: 241.
United Nations Environment Programme (UNEP). (2015) Minamata Convention on Mercury. Retrieved July 11, 2015, from http://www.unep.org/chemicalsandwaste/Metals/Mercury/tabid/434/Default.aspx.
US Environmental Protection Agency (USEPA). (2015) Mercury. Retrieved July 19, 2015, from http://www.epa.gov/mercury/index.html.
U.S. Food and Drug Administration (FDA). (2015) Mercury and Methylmercury. Retrieved July 9, 2015, from http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/DentalProducts/DentalAmalgam/ucm171094.htm
Vaughan EE, Schut F, Heilig HGHJ, Zoetendal EG, de Vos WM, Akkermans ADL. (2000) A molecular view of the intestinal ecosystem. Curr Issues Intest Microbiol 1: 1-12.
von Canstein H, Li Y, Wagner-Dobler I. (2001) Long-term performance of bioreactors cleaning mercury-contaminated wastewater and their response to temperature and mercury stress and mechanical perturbation. Biotechnol Bioeng 74: 212-219.
Wagh AS, Singh D, Jeong SY. (2000) Mercury stabilization in chemically bonded phosphate ceramics, Invited paper presented at EPA’s Workshop on Mercury Products, Processes, Waste, and the Environment: Eliminating, Reducing and Managing Risks, Baltimore.
Woese CR and Fox GE. (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74: 5088-5090.
Woese CR. (1987) Bacterial evolution. Microbiol Rev 51: 221-271.
Zhang W, Chen L, Liu D. (2012) Characterization of a marine-isolated mercury-resistant Pseudomonas putida strain SP1 and its potential application in marine mercury reduction. Appl Microbiol Biotechnol 93: 1305-1314
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.217.6.114
論文開放下載的時間是 校外不公開

Your IP address is 18.217.6.114
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code