Responsive image
博碩士論文 etd-0721115-164606 詳細資訊
Title page for etd-0721115-164606
論文名稱
Title
添加乳化型釋碳基質整治三氯乙烯污染場址之生物復育研究
Bioremediation of trichloroethylene contaminated sites enhanced by emulsified carbon-releasing substrate
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
102
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-20
繳交日期
Date of Submission
2015-08-21
關鍵字
Keywords
乳化型釋碳基質、產氫基因、即時定量PCR、三氯乙烯、變性梯度膠體電泳
hydA gene, denaturing gradient gel electrophoresis, real-time PCR, emulsified carbon-releasing substrate, trichloroethylene
統計
Statistics
本論文已被瀏覽 5692 次,被下載 0
The thesis/dissertation has been browsed 5692 times, has been downloaded 0 times.
中文摘要
乳化型釋碳基質(emulsified carbon-releasing substrate,ECS)為一種常被利用在生物復育污染場地時所添加到土壤中的營養基質,其經由微生物的代謝後可以促進微生物生長,並且增強微生物之生物降解功能。本研究對象為國內某一三氯乙烯污染場址,其內依地下水流方向鑿有五口井,從上游至下游依序編號為P64、P48、TW11、P22、P24,其中P22為ECS灌注井,其餘為採樣監測井。污染場址中之菌相監測係以16S rRNA基因為對象,利用聚合酶連鎖反應變性梯度膠體電泳(PCR-DGGE)方式進行菌相結構之分析。另外也利用即時定量PCR(real-time PCR)的方式偵測Dehalococcoides 菌屬及及還原脫氯基因(RDase)TceA、VcrA、BvcA之表現量,以評估污染物降解之生物活性。菌相分析結果顯示P22之菌相比其他口井之菌相豐富,這是由於加入ECS後促進微生物增長之故。而從real-time PCR對Dehalococcoides菌屬定量分析以及現場參數中的pH值高低,可以發現當pH值下降時,Dehalococcoides菌屬在環境中的數量也下降,但並不會影響Dehalococcoides菌屬的生長。從還原氧化電位(ORP)之檢測發現,污染場址一直保持在還原厭氧的狀態,有利於含氯有機物在污染場址中進行還原脫氯的反應。此外,亦自污染場址地下水中篩選出具有產氫氣能力的菌種Clostridium butyricum,可在三氯乙烯在還原脫氯的過程中,提供氫氣作為電子之供應者。由厭氧批次實驗的結果可以發現第28天加菌組之產氫基因(hydA)達到最高量1.7×1011 gene copies/L,三氯乙烯的濃度也持續下降,以此可以推測C. butyricum能穩定的提供氫氣,幫助Dehalococcoides菌屬進行還原脫氯反應。
Abstract
The emulsified carbon-releasing substrate (ECS) is commonly used in bioremediation that can promote the microbial growth and enhance biodegradation process. The remediation object of this study is a local trichloroethylene (TCE) contaminated site. Based on the direction of the groundwater flow, there are five deep wells were dug in the remediation site, i.e. P64, P48, TW11, P22, and P24 respectively. P22 is the injection well and the others are sampling and monitoring wells. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) technique was used to monitor the microbial diversity during the remediation process. The real-time PCR was also used to detect the quantity of Dehalococcoides species as well as 3 dehalogenase genes (TceA、VcrA、BvcA) to evaluate the dechlorination activity. Results show that well P22 contained the most microbial diversity than all other wells because the injected ECS encouraged the microbial growth. The qPCR studies revealed that the content of Dehalococcoides species was related to pH value, the lower the pH value the less Dehalococcoides species present. However, the pH value did not overly affect the growth of Dehalococcoides species. The oxidation-reduction potential(ORP) indicated that the contaminated site was anaerobical and could stimulate the reductive dechlorination process. A hydrogen production Clostridium butyricum bacterial strain was isolated from the groundwater. The hydrogen produced by this strain can be used as an electron donor for TCE dechlorination. The expression of hydA gene of the anaerobic batch culture reached the highest amount (ie. 1.7× 1011 gene copies / L) at 28 day. The steady decreasing of TCE concentrations suggested that C. butyricum could provide hydrogen continually to assist the anaerobic dechlorination reaction.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
ABSTRACT iv
目錄 v
壹、前言 1
1.1 研究背景 1
1.2 三氯乙烯 2
1.3 氯乙烯 3
1.4 乳化型釋碳基質 4
1.5 含氯有機物之生物分解 4
1.5.1含氯有機物在好氧環境中的降解 4
1.5.2含氯有機物在厭氧環境中的降解 5
1.6 生物復育 7
1.7 微生態系統(Microcosm)研究 8
1.8 Clostridium butyricum以及hydA gene 8
1.9 分子生物學監測技術 9
1.9.1 16S rDNA 9
1.9.2聚合酶連鎖反應變性梯度膠體電泳 10
1.9.3即時定量PCR (real-time PCR) 11
1.10 研究目的 12
貳、材料與方法 14
2.1 藥品、培養基、儀器 14
2.2 污染場址及地理位置 14
2.3 現場水質參數監測 15
2.4 污染地下水樣品之genomic DNA萃取及純化 15
2.4.1 genomic DNA萃取 15
2.4.2 DNA純化 16
2.5 聚合酶連鎖反應-變性梯度膠體電泳(PCR-DGGE) 17
2.5.1聚合酶連鎖反應 17
2.5.2變性梯度膠體電泳 18
2.6 Cloning 19
2.6.1 Ligation 19
2.6.2 Transformation 19
2.6.3 NCBI nucleotide BLAST 20
2.7 即時聚合酶鏈鎖反應(Real-time PCR) 21
2.7.1標準曲線 21
2.7.2 Real-time PCR 22
2.8 篩選厭氧菌 23
固態培養基篩選 23
2.9 微生物系統厭氧批次實驗 24
2.9.1氣相層析儀/電子捕捉偵測器(GC/ECD) 24
2.9.2三氯乙烯生物降解實驗 24
參、結果與討論 26
3.1 地下水水質現場參數及菌數監測 26
3.1.1場址之總有機碳(TOC)含量變化 26
3.1.2場址之硫化氫(H2S)及甲烷(CH4)濃度變化 27
3.1.3場址中水溫及ORP之數值變化 29
3.1.4場址之pH值與厭氧分解菌數值變化 30
3.1.5 場址之含氯揮發性有機物(VOC)及還原脫氯基因數值變化 31
3.1.6厭氧分解菌Dehalococcoides菌屬及還原脫氯基因(RDase)數值變化 34
3.1.7微生物菌相分析 34
3.2 Clostridium butyricum厭氧批次實驗 35
3.2.1厭氧批次實驗之三氯乙烯(TCE)數值、pH值及產氫基因(hydA)變化 35
3.2.2 Dehalococcoides菌屬數值變化 37
肆、結論 39
伍、建議 42
參考文獻 43
圖附錄 51
表附錄 73
參考文獻 References
行政院環保署,2008, http://sgw.epa.gov.tw/public/0802_handbook.asp。
行政院環保署土壤及地下水污染整治法,2014, http://sgw.epa.gov.tw/public/0201.asp。
行政院環保署,2015a,
http://sgw.epa.gov.tw/public/ContaminatedSitesMap/Default.aspx。
行政院環保署,2015b,http://sgw.epa.gov.tw/public/07_Pollutant.asp。
行政院環保署毒災管理系統,2015a, http://toxiceric.epa.gov.tw/Chm_/Chm_index.aspx?vp=MSDS。
行政院環保署土壤及地下水污染管制標準,2015,
http://w3.epa.gov.tw/epalaw/search/LordiDispFull.aspx?ltype=14&lname=0130。
行政院環保署毒災管理系統,2015b,
http://toxiceric.epa.gov.tw/Chm_/Chm_index.aspx?vp=MSDS。
行政院環保署毒災管理系統,2015c,
http://toxiceric.epa.gov.tw/Chm_/Chm_index.aspx?vp=MSDS。
行政院環保署毒災管理系統,2015d,
http://toxiceric.epa.gov.tw/Chm_/Chm_index.aspx?vp=MSDS。

Aulenta, F., Bianchi, A., Majone, M., Papini, M. P., Potalivo, M., & Tandoi, V. (2005). Assessment of natural or enhanced in situ bioremediation at a chlorinated solvent-contaminated aquifer in Italy: a microcosm study.Environment International, 31, 185-190.


Aulenta, F., Majone, M., & Tandoi, V. (2006). Enhanced anaerobic bioremediation of chlorinated solvents: environmental factors influencing microbial activity and their relevance under field conditions. Journal of Chemical Technology and Biotechnology, 81, 1463-1474.




Bahr, A., Fischer, A., Vogt, C., & Bombach, P. (2015). Evidence of polycyclic aromatic hydrocarbon biodegradation in a contaminated aquifer by combined application of in situ and laboratory microcosms using 13 C-labelled target compounds. Water Research, 69, 100-109.


Boopathy, R. (2000). Factors limiting bioremediation technologies. Bioresource Technology, 74, 63-67.


Borden, R. C., & Rodriguez, B. X. (2006). Evaluation of slow release substrates for anaerobic bioremediation. Bioremediation Journal, 10, 59-69.


Bowles, L. K., & Ellefson, W. L. (1985). Effects of butanol on Clostridium acetobutylicum. Applied and Environmental Microbiology, 50, 1165-1170.


Bowman, K. S., Rainey, F. A., & Moe, W. M. (2009). Production of hydrogen by Clostridium species in the presence of chlorinated solvents. FEMS Microbiology Letters, 290, 188-194.


Chen, J. L., Ortiz, R., Steele, T. W., & Stuckey, D. C. (2014). Toxicants inhibiting anaerobic digestion: A review. Biotechnology Advances, 32, 1523-1534.


Clewell, H. J., Gentry, P. R., Gearhart, J. M., Allen, B. C., & Andersen, M. E. (2001). Comparison of cancer risk estimates for vinyl chloride using animal and human data with a PBPK model. Science of the Total Environment, 274, 37-66.


Cupples, A. M. (2008). Real-time PCR quantification of Dehalococcoides populations: methods and applications. Journal of Microbiological Methods,72, 1-11.




Drosinos, E. H., Mataragas, M., & Metaxopoulos, J. (2006). Modeling of growth and bacteriocin production by Leuconostoc mesenteroides E131. Meat Science, 74, 690-696.



Ferguson, J. F., & Pietari, J. M. H. (2000). Anaerobic transformations and bioremediation of chlorinated solvents. Environmental Pollution, 107, 209-215.


Fogel, M. M., Taddeo, A. R., & Fogel, Samuel (1986). Biodegradation of chlorinated ethenes by a methane-utilizing mixed culture. Applied and Environmental Microbiology, 51, 720-724.


Freedman, D. L., Danko, A. S., & Verce, M. F. (2001). Substrate interactions during aerobic biodegradation of methane, ethene, vinyl chloride and 1, 2-dichloroethenes. Water Science and Technology, 43, 333-340.


Fraser, C. S., & Doudna, J. A. (2007). Quantitative studies of ribosome conformational dynamics. Quarterly Reviews of Biophysics, 40, 163-189.


Giri, A. K. (1995). Genetic toxicology of vinyl chloride—a review. Mutation Research/Reviews in Genetic Toxicology, 339, 1-14.


Guilbeault, M. A., Parker, B. L., & Cherry, J. A. (2005). Mass and flux distributions from DNAPL zones in sandy aquifers. Groundwater, 43, 70-86.


Hamby, D. M. (1996). Site remediation techniques supporting environmental restoration activities—a review. Science of the Total Environment, 191, 203-224.




Harkness, M., & Fisher, A. (2013). Use of emulsified vegetable oil to support bioremediation of TCE DNAPL in soil columns. Journal of Ccontaminant Hydrology, 151, 16-33.


Hartmans, S., & De Bont, J. A. (1992). Aerobic vinyl chloride metabolism in Mycobacterium aurum L1. Applied and Environmental Microbiology, 58, 1220-1226.


He, J., Ritalahti, K. M., Aiello, M. R., & Löffler, F. E. (2003). Complete detoxification of vinyl chloride by an anaerobic enrichment culture and identification of the reductively dechlorinating population as a Dehalococcoides species. Applied and Environmental Microbiology, 69, 996-1003.


He, J., Sung, Y., Krajmalnik‐Brown, R., Ritalahti, K. M., & Löffler, F. E. (2005). Isolation and characterization of Dehalococcoides sp. strain FL2, a trichloroethene (TCE)‐and 1, 2‐dichloroethene‐respiring anaerobe.Environmental Microbiology, 7, 1442-1450.


Henson, J. M., Yates, M. V., Cochran, J. W., & Shackleford, D. L. (1988). Microbial removal of halogenated methanes, ethanes, and ethylenes in an aerobic soil exposed to methane. FEMS Microbiology Ecology, 4, 193-201.


Holmes, V. F., He, J., Lee, P. K., & Alvarez-Cohen, L. (2006). Discrimination of multiple Dehalococcoides strains in a trichloroethene enrichment by quantification of their reductive dehalogenase genes. Applied and Environmental Microbiology, 72, 5877-5883.


Janssen, P. H. (2006). Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Applied and Environmental Microbiology,72, 1719-1728.


Krajmalnik-Brown, R., Hölscher, T., Thomson, I. N., Saunders, F. M., Ritalahti, K. M., & Löffler, F. E. (2004). Genetic identification of a putative vinyl chloride reductase in Dehalococcoides sp. strain BAV1. Applied and Environmental Microbiology, 70, 6347-6351.


Lee, I. S., Bae, J. H., & McCarty, P. L. (2007). Comparison between acetate and hydrogen as electron donors and implications for the reductive dehalogenation of PCE and TCE. Journal of Contaminant Hydrology, 94, 76-85.


Lee, P. K., Macbeth, T. W., Sorenson, K. S., Deeb, R. A., & Alvarez-Cohen, L. (2008). Quantifying genes and transcripts to assess the in situ physiology of “Dehalococcoides” spp. in a trichloroethene-contaminated groundwater site.Applied and Environmental Microbiology, 74, 2728-2739.

Lerman, L. S., Fischer, S. G., Hurley, I., Silverstein, K., & Lumelsky, N. (1984). Sequence-determined DNA separations. Annual Review of Biophysics and Bioengineering, 13, 399-423.


Lindow, N. L., & Borden, R. C. (2005). Anaerobic bioremediation of acid mine drainage using emulsified soybean oil. Mine Water and the Environment, 24, 199-208.


Magnuson, J. K., Romine, M. F., Burris, D. R., & Kingsley, M. T. (2000). Trichloroethene reductive dehalogenase fromDehalococcoides ethenogenes: Sequence of tceA and substrate range characterization. Applied and Environmental Microbiology, 66, 5141-5147.


Mishra, A. K., Lagier, J. C., Robert, C., Raoult, D., & Fournier, P. E. (2012). Non-contiguous finished genome sequence and description of Clostridium senegalense sp. nov. Standards in Genomic Sciences, 6, 386.


Muyzer, G., De Waal, E. C., & Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 59, 695-700.



Müller, J. A., Rosner, B. M., Von Abendroth, G., Meshulam-Simon, G., McCarty, P. L., & Spormann, A. M. (2004). Molecular identification of the catabolic vinyl chloride reductase from Dehalococcoides sp. strain VS and its environmental distribution. Applied and Environmental Microbiology, 70, 4880-4888.


Nakatsu, C. H., Torsvik, V., & Øvreås, L. (2000). Soil community analysis using DGGE of 16S rDNA polymerase chain reaction products. Soil Science Society of America Journal, 64, 1382-1388.


Pöritz, M., Goris, T., Wubet, T., Tarkka, M. T., Buscot, F., Nijenhuis, I., & Adrian, L. (2013). Genome sequences of two dehalogenation specialists–Dehalococcoides mccartyi strains BTF08 and DCMB5 enriched from the highly polluted Bitterfeld region. FEMS Microbiology Letters, 343, 101-104.


Pritchard, P. H., Mueller, J. G., Rogers, J. C., Kremer, F. V., & Glaser, J. A. (1992). Oil spill bioremediation: experiences, lessons and results from the Exxon Valdez oil spill in Alaska. Biodegradation, 3, 315-335.


Randall, P. M., Fimmen, R., Lal, V., & Darlington, R. (2013). In-situ subaqueous capping of mercury-contaminated sediments in a fresh-water aquatic system, Part I—Bench-scale microcosm study to assess methylmercury production. Environmental Research, 125, 30-40.


Révész, S., Sipos, R., Kende, A., Rikker, T., Romsics, C., Mészáros, É., & Márialigeti, K. (2006). Bacterial community changes in TCE biodegradation detected in microcosm experiments. International Biodeterioration & Biodegradation, 58, 239-247.


Ritalahti, K. M., Amos, B. K., Sung, Y., Wu, Q., Koenigsberg, S. S., & Löffler, F. E. (2006). Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains. Applied and Environmental Microbiology, 72, 2765-2774.


Roy, A. S., Baruah, R., Borah, M., Singh, A. K., Boruah, H. P. D., Saikia, N., & Bora, T. C. (2014). Bioremediation potential of native hydrocarbon degrading bacterial strains in crude oil contaminated soil under microcosm study. International Biodeterioration & Biodegradation, 94, 79-89.


Ryu, H., Elk, M., Khan, I. U., Harwood, V. J., Molina, M., Edge, T. A., & Santo Domingo, J. (2014). Comparison of two poultry litter qPCR assays targeting the 16S rRNA gene of Brevibacterium sp. Water Research, 48, 613-621.


Tsai, T. T., Kao, C. M., Yeh, T. Y., Liang, S. H., & Chien, H. Y. (2009). Application of surfactant enhanced permanganate oxidation and bidegradation of trichloroethylene in groundwater. Journal of Hazardous Materials, 161, 111-119.


Tyagi, M., da Fonseca, M. M. R., & de Carvalho, C. C. (2011). Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation, 22, 231-241.


U.S. Agency for Toxic Substances and Disease Registry (ATSDR). (2001) Public health statement 1,2-dichloroethane.
http://www.atsdr.cdc.gov/phs/phs.asp?id=590&tid=110


U.S. Agency for Toxic Substances and Disease Registry (ATSDR). (2014) Trichloroethylene - ToxFAQs™
http://www.atsdr.cdc.gov/toxfaqs/tfacts19.pdf


Vogel, T. M. (1996). Bioaugmentation as a soil bioremediation approach.Current Opinion in Biotechnology, 7, 311-316.




Wackett, L. P., & Gibson, D. T. (1988). Degradation of trichloroethylene by toluene dioxygenase in whole-cell studies with Pseudomonas putida F1.Applied and Environmental Microbiology, 54, 1703-1708.


Wang, M. Y., Tsai, Y. L., Olson, B. H., & Chang, J. S. (2008). Monitoring dark hydrogen fermentation performance of indigenous Clostridium butyricum by hydrogenase gene expression using RT-PCR and qPCR. International Journal of Hydrogen Energy, 33, 4730-4738.


Wang, X., Monis, P. T., Saint, C. P., & Jin, B. (2009). Biochemical kinetics of fermentative hydrogen production by Clostridium butyricum W5. International Journal of Hydrogen Energy, 34, 791-798.


Wang, S. M., & Tseng, S. K. (2009). Dechlorination of trichloroethylene by immobilized autotrophic hydrogen-bacteria and zero-valent iron. Journal of Bioscience and Bioengineering, 107, 287-292.


Wang, S. Y., Kuo, Y. C., Huang, Y. Z., Huang, C. W., & Kao, C. M. (2015). Bioremediation of 1, 2-dichloroethane contaminated groundwater: Microcosm and microbial diversity studies. Environmental Pollution, 203, 97-106.


Yamamoto, K., Fukushima, M., Kakutani, N., & Tsuruho, K. (2001). Contamination of vinyl chloride in shallow urban rivers in Osaka, Japan. Water Research, 35, 561-566.


Yates, M. D., Kiely, P. D., Call, D. F., Rismani-Yazdi, H., Bibby, K., Peccia, J., & Logan, B. E. (2012). Convergent development of anodic bacterial communities in microbial fuel cells. The ISME journal, 6, 2002-2013.


Zhou, J., Bruns, M. A., & Tiedje, J. M. (1996). DNA recovery from soils of diverse composition. Applied and Environmental Microbiology, 62, 316-322
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.129.67.26
論文開放下載的時間是 校外不公開

Your IP address is 3.129.67.26
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code