Responsive image
博碩士論文 etd-0721115-175902 詳細資訊
Title page for etd-0721115-175902
論文名稱
Title
利用電漿技術降低丁醇/異丁醇/生質柴油/柴油之混合油品於柴油引擎污染排放之研究
Reducing pollutant emissions from the diesel engine fueled with butanol/isobutanol/biodiesel/diesel blends by use of the plasma-enhanced combustion system
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
127
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-16
繳交日期
Date of Submission
2015-08-21
關鍵字
Keywords
懸浮微粒、柴油引擎、電漿、醛酮類化合物、生質柴油
Biodiesel, Diesel engines, Particulate matters, Carbonyl compounds, Plasma
統計
Statistics
本論文已被瀏覽 5716 次,被下載 32
The thesis/dissertation has been browsed 5716 times, has been downloaded 32 times.
中文摘要
本研究利用常壓電漿設備(電壓0、4、5、6、7 kV)輔助柴油引擎,並使用柴油(Diesel, 50-100 vol%)、丁醇(Butanol, 10 vol%)與異丁醇(Isobutanol, 10vol%)以及廢食用油轉酯化之生質柴油(WCO-Biodiesel, 0-40 vol%)之不同混合配比油品進行試驗。探討柴油引擎排放尾氣之傳統污染物(CO、NOx)、懸浮微粒(PM10、PM2.5)及醛酮類化合物之排放差異特性,並計算柴油引擎之制動單位燃料消耗率及制動熱效率。最後藉由實驗成果,探討在不同操作條件下柴油引擎污染排放之變化,並找出電漿設備輔助柴油引擎污染排放之最佳電壓參數、混合油品之最佳摻配比及能源使用效率等。
研究成果顯示,柴油引擎污染排放隨著電漿設備之電壓提高有逐漸降低之趨勢。相較於無使用電漿設備(0 V),在最佳操作電壓6 kV時污染物CO、NOx、PM10及PM2.5有削減率約24.1%、24.3%、22.8%及22.1%;醛酮類化合物中甲醛、乙醛及丙烯醛之削減率分別為11.8%、13.2%及13.0%;制動單位燃料消耗率則會減少8.91%;制動熱效率則會上升9.77%。實驗也發現當混合燃料固定丁醇或異丁醇比例(10 vol%),且隨著生質柴油比例增加(0-40 vol%),柴油引擎污染排放有逐漸降低之趨勢。相較於使用純柴油(D100),混合油品最佳摻配比D50B10W40作為燃料時污染物CO、NOx、PM10及PM2.5之削減率分別為17.7%、18.5%、14.5%及15.1%;醛酮類化合物中甲醛及乙醛之削減率分別為20.1%及68.9%。而實驗成果也顯示添加固定異丁醇之混合燃料,其污染排放趨勢與丁醇大致相同。
Abstract
In this study, the behavior of pollutant emission was observed when used the nonthermal plasma-enhanced combustion system(voltage 0, 4, 5, 6, 7 kV) on the diesel engine which is added to the fuel mixed with diesel(50-100 vol%)、butanol(10 vol%)、isobutanol(10 vol%) and biodiesel transformed by waste cooking oil (WCO-biodiesel, 0-40%). This study will focus on the emission of pollutants inclouding the traditional pollutants(CO and NOx)、particulate matters (PM10 and PM2.5) and carbonyl compounds on the diesel engine and calculate the brake specific fuel consumption(BSFC) and break thermal efficiency(BTE). In the end, according to the result of experiment, the optimum voltage of the plasma-enhanced combustion system and the optimum mixing proportion of the fuel would be found in this study.
The results indicated that the pollutant emission of the diesel engine was decreased with the increasing voltage of the plasma-enhanced combustion system. Compared to the non-use of the plasma-enhanced combustion system, It reduced 24.1%、24.3%、22.8% and 22.1% for CO、NOx、PM10 and PM2.5; 11.8%、13.2% and 13.0% for formaldehyde、acetaldehyde and acrolein which were the most of carbonyl compounds; 8.91% for BSFC at the optimum voltage of the plasma-enhanced combustion system was 6kV. Furthermore, the result also indicated that the pollutant emission of the diesel engine was decreased with the increasing proportion of WCO-biodiesel(0-40 vol%) when the proportion of butanol or isobutanol was 10 vol%. Compared to the use of diesel(D100), It reduced 17.7%、18.5%、14.5% and 15.1% for CO、NOx、PM10 and PM2.5; 20.1% and 68.9% for formaldehyde and acetaldehyde at the optimum mixing proportion of the fuel was D50B10W40. It was also found that the emission trend of isobutanol was similar to butanol when the proportion was 10 vol% of the mixing fuel in the diesel engine.
目次 Table of Contents
摘要 i
ABSTRACT ii
目錄 iii
圖目錄 vi
表目錄 ix
第一章 前言 1
1-1 研究緣起 1
1-2 研究目標 3
第二章 文獻回顧 4
2-1 常壓電漿技術(Atmospheric-pressure plasma) 4
2-1-1 電漿生成基本理論及特性 4
2-1-2 電漿分類 7
2-1-3 非熱平衡電漿(低溫電漿) 10
2-2 能源概況 17
2-3 生質柴油 20
2-3-1 生質柴油之特性 20
2-3-2 廢食用油轉脂化生質柴油技術 21
2-3-3 生質燃料之應用與發展趨勢 25
2-4 丁醇、異丁醇之特性 26
2-5 生質柴油於引擎運轉下污染物之排放特徵 28
2-6 細懸浮微粒(PM2.5)之排放特徵 30
2-7 醛酮類化合物之來源及排放特徵 33
2-7-1 醛酮類化合物之危害特性 34
2-8 傳統空氣污染物之危害特性 36
2-8-1 一氧化碳(CO)之危害特性 36
2-8-2 二氧化碳(CO2)之危害特性 36
2-8-3 氮氧化物(NOx)之危害特性 37
2-8-4 懸浮微粒(PM10)之危害特性 37
第三章 研究方法 39
3-1 研究架構與流程 39
3-2 實驗材料藥品與設備 42
3-2-1 柴油引擎發電機 42
3-2-2 常壓電漿設備 43
3-2-3不同配比混合油品 44
3-3 柴油引擎採樣系統 47
3-3-1 傳統污染物採樣方法 47
3-3-2 懸浮微粒採樣與分析 48
3-3-3 醛酮類化合物採樣與分析 49
3-3-4 使用之藥品與耗材 50
第四章 結果與討論 51
4-1 柴油引擎制動單位燃料消耗率(BSFC) 51
4-1-1不同電壓對制動單位燃料消耗率(BSFC)之影響 53
4-2 柴油引擎制動熱效率(BTE) 55
4-3 一氧化碳(CO)之排放特徵 57
4-3-1不同電壓下一氧化碳(CO)之削減率 59
4-3-2混合油品之一氧化碳(CO)削減率 61
4-4 氮氧化物(NOx)之排放特徵 63
4-4-1不同電壓下氮氧化物(NOx)之削減率 65
4-4-2混合油品之氮氧化物(NOx)削減率 67
4-5 PM10之排放特徵 69
4-5-1不同電壓下PM10之削減率 71
4-5-2混合油品之PM10削減率 73
4-6 PM2.5之排放特徵 75
4-6-1不同電壓下PM2.5之削減率 77
4-6-2混合油品之PM2.5削減率 79
4-7 醛酮類化合物之排放比例 81
4-7-1 甲醛之排放特徵 83
4-7-1-1不同電壓下甲醛之削減率 85
4-7-1-2混合油品之甲醛削減率 87
4-7-2 乙醛之排放特徵 89
4-7-2-1不同電壓下乙醛之削減率 91
4-7-2-2混合油品之乙醛削減率 93
4-7-3 丙烯醛之排放特徵 95
4-7-3-1不同電壓下丙烯醛之削減率 97
第五章 結論與建議 99
5-1結論 99
5-2 建議 101
參考文獻 102
參考文獻 References
Agbor, V.B., Cicek, N., Sparling, R., Berlin, A., Levin, D.B., 2011. Biomass pretreatment: Fundamentals toward application. Biotechnology Advances, 29, pp.675–685.
Alasfour, F.N. NOx emissions from spark ignition engine using 30% iso-butanol-gasoline blend: part 2-ignition timing. Applied Thermal Engineering, 1998, 18, 609-618.
Ali, Y., Hanna, M. A. Alternative diesel fuels form vegetable oils. Bioresource Technol, 1994, 50, 153-163.
Altin, R. S., Cetinkaya, H. S. Yucesu., The potential of using vegetable oil fuels as fuel for diesel engines,Energy Conversion and Management, 2001, 42, 529-539.
Bailey, R. A., Clark, H. M., Krause, S., Strong, R. L., 1978. Atmospheric Press, New York.
Balat, M. Potential alternatives to edible oils for biodiesel production – A review of current work. Energy Conversion and Management, 2011, 52, 1479–1492.
Ban-Weiss, G. A., Chen, J. Y., Buchholz, B. A., Dibble, R. W. A numerical investigation into the anomalous slight NOx increase when burning biodiesel; a new(old) theory. Fuel Process Technology, 2007, 88, 659-667.
Baugh, J., Ray, W., Black, F. Motor vehicle emissions under reduced ambient temperature idle operating conditions. Atmospheric Environment, 1987, 21, 2077–2082.
Bromberg, L., Cohn, D.R., Rabinovitch, A., O’Brien, C., Hochgreb, S. Energy Fuels, 1998, 12, 11-18.
Canakci, M. Combustion characteristics of a turbocharged DI compression ignition engine fueled with petroleum diesel fuels and biodiesel. Bioresource Technology, 2007, 98, 1167-1175.
Cardone, M., Prati, M.V., Rocco V., Seggiani, M., Senature, A., Vitolo, S. Brassica carinata as an Alternative Oil Crop for the Production of Biodiesel in Italy: Engine Performance and Regulated and Unregulated
Carlier, P., Hannachi, H., Mouvier, G. The chemistry of carbonyl compounds in the atmosphere- a review. Atmospheric Environment, 1986, 20, 2079–2099.
Carraretto, C., Macor, A., Mirandola, A., Stoppato, A., Tonon, S. Biodesel as alternative fuel : experimental analysis and energetic evaluations. Energy, 2004, 29, 2195-2211.
Chang M.B., Chang J.S., “ Abatement of PFCs from Semiconductor Manufacturing Processes by Nonthermal Plasma Technologies: A Critical Review”, Ind. Eng. Chem. Res. 2006, 45, 4101-4109.
Chelemugh., Namioka, T., Yoshikawa, K., Takeahita, M., Fujiwara, K. Commerical-scale demonstration of pollutant emission reduction and energy saving for industrial boilers by employing water/oil emulsified fuel. Applied Energy, 2011.
Chiang, T. A., Wu, P. F., Wang, L. F., Lee, H., Lee, C. H., and Ko, Y. C. Mutagenicity and polycyclic aromatic hydrocarbon content of fumes from heatedcooking oils produced in Taiwan. Mutation Research, 1997, 381, 157–161.
Corrêa, S,M., Arbilla, G. Carbonyl emissions in diesel and biodiesel exhaust. Atmospheric Environment, 2008, 42, 769–775.
Demirbas, A. Biodiesel Production from Vegetable Oils via Catalytic and Non-catalytic Supercritical Methanol Transesterification Methods. Prog. Energy Combust. Sci, 2005, 31: 466-487.
Demirbas, A. Recent developments in biodiesel fuels. International Journal of Green Energy, 2007, 4, 15–26.
Deyab, M. A., Keera, S. T., El Sabagh, S. M. Chlorhexidine digluconate as corrosion inhibitor for carbon steel dissolution in emulsified diesel fuel. Corrosion Science, 2011, 53, 2592-2597.
Di, Y., Cheung, C. S., Huang, Z. Comparison of the effect of biodiesel-diesel and ethanol-diesel on the gaseous emission of a direct-injection diesel engine. Atmospheric Environment, 2009, 43, 2721-2730.
Dorado, M. P., Ballesteros, E., Arnal, J. M., Gomez, J., Lopez, F. J. Exhaust emission from a Diesel engine with transesterified waste olive oil. Fuel 2003, 82, 1311-15.
Du C.M., Mo J.M., Tang J., Huang D.W., Mo Z.X., Wang Q.K., Ma S.Z., Chen Z.J. Plasma reforming of bio-ethanol for hydrogen rich gas production. Applied Energy, 2014, 133, 70-79.
Encinar, J. M., Gonalez, J. F., Rodriguez, J. J., Tejedor, A. Biodiesel Fuels from vegetable oils:bTransesterification of Cynara cardunculus L. Oils with Ethanol. Energy and Fuels, 2002, 16, 443-450.
Engine by Adding Light Cycle Oil to Premium Diesel Fuel. Journal of Air & Waste Management Association, 2006, 56, 752-758.
Exhaust Emission. Environ Sci. Technol, 2002, 36, 4656-4562.
Fehsenfeld, F. C., Coauthors. Emissions of volatile organic compounds form vegetation and implications for atmospheric chemistry. Global Biogeochemical Cycles 6, 1992, 389–430.
Freedman, B., Butterfield, R. O., Pryde, E. H. Journal of the American Oil Chemists Society, 1986, 63, 1375-1380.
Guarieiro, L. L. N., Pereira, P. A. P., Torres, E. A., Rocha, G. O. R., Andrade, J. B. Carbonyl compounds emitted by a diesel engine fuelled with diesel and biodiesel-diesel blends: Sampling optimization and emissions profile. Atmospheric Environment, 2008, 42, 8211–8218.
Haas, M. J., Scott, K. M., Alleman, T. L., Mccormick, R. L. Engine Performance of Biodiesel Fuel Prepared from Soybean Soapstock:A High Quality Renewable Fuel Produced from a Waste Feedstock. Energy & Fuels, 2001, 15, 1207-1212.
Herbert, L. and F. Lothar, “Process for the production of fatty acid esters of short-chain aliphatic alcohols from fats and / or oils containing free fatty acids”, United States Patent : 4608202, 1986.
Heywood, J. B. Internal Combustion Engine Fundamentals. McGraw-Hill Book Company 1988, ISBN 0-07-L00499-8.
Hsieh, L. T., Wu, E. M. Y., Wang, L. C., Chang-Chien, G. P., Yeh, Y. F. Reduction of Toxic Pollutants Emitted from Heavy-duty Diesel Vehicles by Deploying Diesel Particulate Filters. Aerosol. Air. Qual. Res, 2011, 11, 709-715.
Kalligeros, S., Zannikos, F., Strournas, S., Lois, E., Anastopoulos, G., Teas, C.H., Sakellarppoulos, F. An investigation of using biodiesel/matine diesel blends on the performance of a stationary diesel engine. Biomass and Bioenergy, 2003, 24, 141-149.
Kannan, G. R.; Anand, R. Experimental investigation on diesel engine with diestrol-water micro emulsions. Energy, 2011,36, 1680-1687.
Karavalakis, G., Bakeas, E., Fontaras, G., Stournas, S. Effect of biodiesel origin on regulated and particle-bound PAH (polycyclic aromatic hydrocarbon) emissions from a Euro 4 passenger car. Energy, 2011, 36, 5328-5337.
Kim, Y., Kim, K.T., Cha, M.S., Song, Y.H., Kim, S.J., “CF4 decomposition using streamer- and glow-mode in dielectric barrier discharges”,IEEE Trans. Plasma Sci., 2005, 33, 1041.
Kittelson, D.B. Engines and nanoparticles: A review. J. Aerosol Science, 1998, 29, 575-588. Lata, D. B., Misra, A., Medhekar, S. Investigations on the combustion parameters of a dual fuel diesel engine with hydrogen and LPG as secondary fuels. International Journal of Hydrogen Energy, 2011, 36,3808-3819.
Kwanchareon, P., Luengnaruemitchai, A., Jai-In, S. Solubility of a diesel-biodiesel-ethanol blend, it’s fuel properties, and it’s emission characteristics form diesel engine. Fuel, 2007, 86, 1053-1061.
Lai, C. H., Liou, S. H., Jaakkola, J. J. K., Huang, H. B., Su, T. Y., Strickland, P. T. Exposure to Polycyclic Aromatic Hydrocarbons Associated with Traffic Exhaust: The Increase of Lipid Peroxidation and Reduction of Antioxidant Capacity. Aerosol. Air. Qual. Res, 2012, 12, 941-950.
Lee, W. J., Liu , Y. C., Francis, K. M., Chen, W. H., Lin, S. L., Yasuhiro, F., Liao, C. N., Wang, L. C. Assessment of energy performance and air pollutant emission in a diesel engine generator fueled with water-containing ethanol-biodiesel-diesel blend of fuels. Energy, 2011, 36, 5591-5599.
Legreid, G., Reimann, S., Steinbacher, M., Staehelin, J., Young, D., Stemmler, K. Measurements of VOCs and NMHCs in a Swiss highway tunnel for estimation of road transport emissions. Environ Sci Technol, 2007, 41, 7060-7066.
Lei, J. L.., Shen, L. H., Bi, Y. H., Chen, H. A novel emulsifier for ethanol-diesel blends and it’s effect on performance and emissions of diesel engine. Fuel, 2011.
Liang, C.W., Ku, C. K., Liang, J. J. Engine exhaust noise feedback to traffic flow and vehicle emission control on-road: A case study in Taichung City. Sustain. Environ. Res, 2012, 22, 3, 159-165.
Lin Y.C., Yang P.M., Chen C.B. Reducing emissions of polycyclic aromatic hydrocarbons and greenhouse gases from engines using a novel plasma-enhanced combustion system. Aerosol Air Qual Res, 2013, 13, 1107-1115.
Lin, S. L., Lee, W. J., Lee, C. F., Chen, S. J. Energy savings and emission reduction of nitrogen oxides, particulate matter, and polycyclic aromatic hydrocarbons by adding water-containing acetone and neat soybean oil to a diesel-fueled engine generator. Energy Fuels, 2010, 24, 4522-4533.
Lin, Y. C., Lee, W. J., Chao, H. R., Wang, S. L., Tsou, T. C., Chang-Chien, G. P. Approach for energy saving and pollution reducing by fueling diesel engines with emulsified biosolution/biodiesel/diesel blend. Environ. Sci. Technol, 2008, 42(10), 3849-3855.
Lin, Y. C., Lee, W. J., Chen, C. C., Chen, C. B. Saving Energy and Reducing Emissions of both Polycyclic Aromatic Hydrocarbon and Particular Matter by Adding Bio-solution to Emulsified Diesel. Environ. Sci. Technol, 2006a, 40, 5553-5559.
Lin, Y. C., Lee, W. J., Hou, H. C. PAHs Emissions and Energy Efficiency of Palm-Biodiesel Blends Fueled on Diesel Generator. Atmospheric Environment, 2006b, 40, 3930-3940.
Lin, Y. C., Lee, W. J., Li, H. W., Chen, C. B., Fang, C. G., Tsai, P. J. Impact of using fishing boat fuel with high poly-aromatic content on the emission of polycyclic aromatic hydrocarbons from the diesel engine. Atmospheric Environment, 2006c, 40, 1601-1609.
Lin, Y. C., Lee, W. J., Wu, T. S., Wang, C.T. Comparison of PAHs and regulated harmful matter emissions form biodiesel blends and paraffinic fuel blends on engine accumulated mileage test . Fuel, 2006d, 85, 2516-2523.
Lin, Y.C., Hsu, K.H., Chen, C.B. Experimental investigation of the performance and emissions of a heavy-duty diesel engine fueled with waste cooking oil biodiesel/ultra-low sulfur diesel blends. Energy, 2011a, 36, 241-248.
Lin, Y.C., Liu, S.H., Chen, Y.M., Wu, T.Y. A new alternative paraffinic-palmbiodiesel fuel for reducing polychlorinated dibenzo-p-dioxin/dibenzofuran emissions from heavy-duty diesel engines. J. Hazard. Mater, 2011b, 185, 1–7.
Liu, S. H., Lin, Y. C., Hsu, K. H. Emissions of Regulated Pollutants and PAHs from Waste-cooking-oil Biodiesel-fuelled Heavy-duty Diesel Engine with Catalyzer. Aerosol. Air. Qual. Res, 2012, 12, 218-227.
Liu, Y., Jiao, W., Qi, G. Preparation and properties of methanol-diesel oil emulsified fuel under high-gravity environment. Renewable Energy, 2011, 36, 1463-1468.
Macor, A., Avella, F., Faedo, D. Effects of 30% v/v biodiesel/diesel fuel blend on regulated and unregulated pollutant emissions form diesel engines. Applied Energy, 2011, 88, 4989-5001.
Magnusson, R., Nilsson, C., Andersson, B. Emissions of aldehydes and ketones from a two-stroke engine using ethanol and ethanol-blended gasoline as fuel. Environmental Science and Technology, 2002, 36, 1656–1664.
Maiboom, A., Tauzia, X. NOx and PM emissions reduction on an automotive HSDI Diesel engine with water-in-diesel emulsion and EGR: An experimental study. Fuel, 2011, 90, 3179-3192.
Michael, L. “Process for the treatment of frying and / or cooking oil”, United States Patent : 4968518,1990.
Mohsin R., Majid Z.A., Shihnan A.H., Nasri N.S., Sharer Z. Effect of biodiesel blends on engine performance and exhaust emission for diesel dual fuel engine. Energy Conversion and Management, 2014, 88, 821-828.
Müller, K. Determination of aldehydes and ketones in the atmosphere-a comparative long time study at an urban and a rural site in eastern Germany. Chemosphere, 1997, 35, 2093–2106.
Nagai, M., Hori, M., Goto, T., “Decomposition and Polymerization of Perfluorinated Compounds in Microwave Excited Atmospheric Pressure Plasma”, J. Appl. Phys., vol. 97, 2005, 123304-1-123304-5.
National Biodiesel Board, 2006, http://www.biodiesel.org.
Palash S.M., Masjuki H.H., Kalam M.A., Atabani A.E., Rizwanul Fattah I.M., Sanjid A. Biodiesel production, characterization, diesel engine performance, and emission characteristics of methyl esters from Aphanamixis polystachya oil of Bangladesh. Energy Conversion and Management, 2015, 91, 149-157.
Pang, X., Shi, X., Mu, Yujing., He, H., Shuai, S., Chen, H, Chen., Li, R. Characteristics of carbonyl compounds emission from a diesel-engine using biodiesel-ehtanol-diesel as fuel. Atmospheric Environment, 2006, 40, 7057−7065.
Peng, C.Y., Yang, H.H., Lan, C.H., Chien, S.M. Effect of the biodiesel blend fuel on aldehyde emissions from diesel engine exhaust. Atmospheric Environment, 2008, 42, 906−915.
Pilusa, T. J., Mollagee, M. M., Muzenda, E. Reduction of Vehicle Exhaust Emissions from Diesel Engines Using the Whale Concept Filter. Aerosol. Air. Qual. Res, 2012, 12, 994-1006.
Poulopoulos, S.G., Samaras, D.P., Philippopoulos, C.J. Regulated and unregulated emissions from an internal combustion engine operating on ethanol-containing fuels. Atmospheric Environment, 2001, 35, 4399–4406.
Qi, D. H., Chen, H., Lee, C. F., Geng, L. M., Bian, Y. Z. Experimental studies of a naturally aspirated, DI diesel engine fuelled with ethanol-biodiesel-water micro-emulsions. Energy Fuels, 2009, 24, 652-663.
Qi, D. H., Chen, H., Matthews, R. D., Bian, Y. Combustion and emission characteristics of ethanol-biodiesel-water micro-emulsions used in a direct injection compression ignition engine. Fuel, 2010, 89, 958-964.
Quick, G. R., Woodmore, P. J., Wilson, B. T. Engine evaluation of linseed oil and derivatives. In: Bagby, M. O.; Pryde, E. H.(Eds.) Vegetable Oils Diesel Fuel: Seminar Ⅲ, ARM-NC-28, US Department of Agriculture: Peoria, IL 1983, 138.
Rakopoulos, D. C., Rakopoulos, C. D., Kakaras, E. C., Giakoumis, E. G. Effect of ethanol-diesel fuel blends on the performance and exhaust emission of heavy duty DI diesel engine. Energy Convers Manage, 2008, 49, 3155-3162.
Rosocha, L.A., Platts, D., Coates, D.M., Stange, S. Bull. Am. Phys, 2003, 48, 21. Sitting, M., 1974. Aldehydes. Pollution Detection and Monitoring Handbook, Noyes Data Corp., Park Ridge, New Jersey.
Schauer, J. J., Kleeman, M. J., Cass, G.R., Simoneit, B. R. T. Measurement of emissions from air pollution sources. 3. C1–C29 organic compounds from fireplace combustion of wood. Environmental Science and Technology, 2001, 35, 1716–1728.
Schumacher, L. G., Borglet, S. C., Fosseen, D., Goetz, W., Hires, W. G. Heavy-Duty Engine Exhaust Emission Test Using Methyl Ester Soybean Oil/Diesel Fuel Blends. Bioresource Technology, 1996, 57, 31-36.
Sharp, C.A., Howell, S.A., Jobe, J. The effect of biodiesel fuels on transient emissions from modern diesel engines, Part I. Regulated emissions and performance. SAE Technical Paper, 2000a, 2000-01-1967.
Sharp, C.A., Howell, S.A., Jobe, J. The effect of biodiesel fuels on transient emissions from modern diesel engines, Part II. Unregulated emissions and chemical characterization. SAE Technical Paper, 2000b, 2000-01-1968.
Shen, H.H., Tao, S., Wang, B., Shen G.F., Li, W., Su, S.S., Huang, Y., Wang, X., Liu, W.X., Li, B.G., Sun, K. Global time trends in PAH emissions from motor vehicles. Atmos. Environ, 2011 45, 2067-2073.
Shepson, P. B., Hastie, D. R., Schiff, H. I., Polizzi, M., Bottenheim, J. W., Anlauf, K., Mackay, G. I., Karecki, D. R. Atmospheric concentrations and temporal variations of C1–C3 carbonyl-compounds at 2 rural sites in Central Ontario. Atmospheric Environment Part A-General Topics, 1991, 25, 2001–2015.
Srivastava, D.K., Agarwal, A.K., Gupta, T. Effect of Engine Load on Size and Number Distribution of Particulate Matter Emitted from a Direct Injection Compression Ignition Engine. Aerosol. Air. Qual. Res, 2011, 7, 915-920.
Subramanian, K. A. A comparison of water-diesel emulsion and time injection of water into the intake manifold of a diesel engine for simultaneous control of NOand smoke emissions. Energy Connversion and Managementm, 2011, 52, 849-857.
Subramanian, R., Nandini, K. E., Sheila, P. M., Gopalakrishna, A. G., Raghavarao, K. S. M. S., Nakajima, M. T., Kimura and Maekawa, T. ;“Membrane processing of used frying oils”, Journal of America Oil Chemist’s Society, 2000, 77, 3, 323-328.
Talebizadeh P., Babaie M., Brown R., Rahimzadeh H., Ristovski Z., Arai M. The role of non-thermal plasma technique in NOx treatment: A review. Renewable and Sustainable Energy Reviews, 2014, 40, 886-901.
Tsai, J. H., Chen, S. J. Huang., K. L., Lin, T. C., Chaung, H. C., Chiu, C. H., Chiu, J. Y., Lin, C. C., Tsa, P. Y. PM, Carbon, PAH, and Particle-Extract-Induced Cytotoxicity of Emissions from a Diesel-Generator Fueled with Waste-Edible-Oil-Biodiesel. Aerosol. Air. Qual. Res, 2012, 12, 843-855.
Tsai, J.H., Chen, S.J., Huang, K.L., Lee, W.J., Kuo, W.C., Lin, W.Y. Characteristics of particulate emissions from a diesel generator fueled with varying blends of biodiesel and fossil diesel. J. Environ. Sci. and Heal. Part A, 2010a, 46, 204-213.
Tsai, J.H., Chen, S.J., Huang, K.L., Lin, Y.C., Lee, W.J., Lin, C.C. PM, Carbon, and PAH emissions from a diesel generator fuelled with soy-biodiesel blends. J. Hazard. Mater. 2010b, 179, 237-243.
Tsai, J.H., Huang, K.L., Chiu, C.H., Lin, C.C., Kuo, W.C., Lin, W.Y., Chaung, H.C., Yang, T.H., Chen, S.J. Particle-bound PAHs and Particle-extract-induced Cytotoxicity of Emission from a Diesel-generator Fuelled with Soy-biodiesel. Aerosol. Air. Qual. Res, 2011, 11, 822-836.
Tsai, Y. I., Yang, H. H., Wang, L. C., Huan, J. L., Young, L. H., Cheng, M. T., Chiang, P. C. The Influences of Diesel Particulate Filter Installation on Air Pollutant Emissions for Used Vehicles. Aerosol. Air. Qual. Res, 2011, 11, 578-583.
University of Idaho (Department of Biological and Agricultural Engineering). Acute toxicity of biodiesel to reshwater and marine organisms. Development of rapeseed biodiesel for use in high-speed diesel engines, Progress Report, 1996, 117-131.
Vicente, G., Coteron, A., Martinez and J. Aracil, M. ”Application of the factorial design of experiments and response surface methodology to optimize biodiesel production”, Industrial Crops and Products, 1998, 8, 29-35.
Viskari, E. L., Matti Vartiainen and Pertti Pasanen. Seasonal and diurnal variation in formaldehyde and acetaldehyde concentrations along a highway in eastern finland. Atmospheric Environment, 2000, 34, 917–923.
Wang, H. K., Cheng, C. Y., Lin, Y. C., Chen, K. S. Emission reductions of Air Pollutants from a Heavy-duty Diesel Engine Mixed with Various Amounts of H2/O2. Aerosol. Air. Qual. Res, 2012, 12, 133-140.
Wang, W.G., Lyons DW, Clark NN, Gautam M. Emissions from Nine Heavy Trucks Fueled by Diesel and Biodiesel Blend without Engine Modification. Environ. Sci. Technol, 2000, 34, 933-939.
Warnatz, J., Maas, U., Dibble, R.W. In Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, and Pollutant Formation. Springer, Berlin. 1996.
Williams, I. D., Revitt, D. M., Hamilton, R. S. A comparison of carbonyl compound concentrations at urban roadside and indoor sites. The Science of the Total Environment, 1996, 189/190, 475–483.
Wu, T.S., Hsieh, L.T., Lin, S.L., Chang, Y.C., Chen, C.B., Hung, C.H. Emissions from Using Viscous Agent-Treated Fishing Boat Fuel Oil: Tests with a Heavy-Duty Diesel Engine (HDDE) Dynamometer. Aerosol. Air. Qual. Res, 2010, 1, 76-85.
Yagodnikov, D.A., Voronetskii, V. Combust. Explos. Shock Waves, 1994, 30, 261.
Yao, Y.C., Tsai, J.H., Chou, H. Air Pollutant Emission Abatement using Application of Various Ethanol-gasoline Blends in High-mileage Vehicles. Aerosol. Air. Qual. Res, 2011, 5, 547-559.
Yuan, C.S., Lin, Y.C., Tsai, C.H., Wu C.C., Lin, Y.S. Reducing carbonyl emissions from a heavy-duty diesel engine at US transientcycle test by use of paraffinic/biodiesel blends. Atmospheric Environment, 2009, 43, 6175–6181.
Yuan, H., Yang, B.L., Zhu, G.L. Synthesis of Biodiesel Using Microwave Absorption Catalysts. Energy & Fuels, 2009, 23, 548-552.
Zhang, J., Smith, K. R. Emissions of carbonyl compounds from various cook stoves in China. Environmental Science and Technology, 1999, 33, 2311–2320.
王啟川等,"能源科技研究發展白皮書", 行政院經濟部能源局,2007。
王運銘等,"能源產業技術白皮書",行政院經濟部能源局,2012。
行政院環境保護署空氣品質改善維護資訊網,2012。
何永盛、林坤海、陳中邦,"油品品質對車輛排放污染物之影響",行政院環境保護署,1996。
吳贊鐸,“柴油車空氣污染學”,淑馨出版社,1990。
李清庭等,"能源產業技術白皮書",行政院經濟部能源局,2014。
李智傑,”酸性觸媒在生質柴油製程之研究”,碩士論文,國立成功大學化學工程學系, 2008。
李灝銘,“以低溫電漿去除揮發性有機物之研究” ,博士論文,國立中央大學,2001。
李灝銘等,“全氟化物溫室效應氣體減量技術評析”,2006 清潔生產暨永續發展研討會,台北,11 月24 日,2006。
卓哲安,“以微波水解搭配吸波材料提高植生復育植物產醣效率之研究“,碩士論文,國立中山大學,2014。
周仕凱、許梅娟,”新能源-生物產丁醇”,科學發展第433 期,2009。
林巧云,”醛酮類對血管收縮素功能影響的先驅研究”,碩士論文,國立台灣大學環境衛生研究所,1998。
施佳育,“運用生質柴油及固定氫氧混合氣對於柴油引擎醛酮化合物排放特徵之研究“,碩士論文,國立中山大學,2013。
柯乃瑋,“常壓非熱電漿處理對糙米理化特性之研究“,碩士論文,國立澎湖科技大學,2014。
徐明璋,“生質柴油的產製及其在柴油引擎上之可行性研究”,碩士論文,國立台灣大學生物產業機電工程學研究所,2001。
張木彬、李灝銘,“以電漿技術摧毀揮發性有機物之研究”,工程科技通訊,第四十一期,105-110,1999。
陳中愷,“常壓常溫電漿應用於乾酪殺菌與品質變化檢測“,碩士論文,私立東海大學,2013。
陳志恩,“利用廢棄物質為催化劑製作生質柴油之研究“,碩士論文,國立中山大學,2013。
陳芃,“從能源統計看減碳與能源政策“,能源話題-能源報導,頁23-25,2008。
陳信良、李灝銘、鄭立群、張木彬,“非熱電漿結合觸媒系統去除全氟化物之研究”,國科會計畫編號:95-EPA-Z-008-002,2006。
陳恭府,“超低硫柴油摻配生質柴油之油品特性及污染排放分析”,碩士論文,國立中山大學環境工程研究所,2005。
黃靖雄,“汽車排氣污染與控制全書”,正工出版社,1991。
楊皓翔,“異丁醇混合柴油對柴油引擎醛酮類化合物排放特性之研究”,碩士論文,國立中山大學環境工程研究所,2005。
劉志宏,“應用實驗設計法與電漿診斷技術探討電漿沉積氟碳膜製程之研究”,碩士論文,私立中原大學,2005。
劉曜寬,“介電質常壓電漿於塑膠包裝材料之殺菌應用“,碩士論文,私立東海大學,2014。
蔣本基、張怡怡、江鴻龍,“都會型氣膠(PM2.5)管制策略規劃”,期末報告,國立台灣大學環境工程研究所,2003。
鄭立群,“以非熱電漿處理CF4及SF6之效率探討” ,碩士論文,國立中央大學,2006。
藍文忠、粘愷峻,”電漿技術於空氣污染控制之發展潛力”工業污染防治季刊,2005。
蘇城祺,微波電漿火炬應用於分解半導體製程尾氣之初探“,碩士論文,國立雲林科技大學,2009。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code