Responsive image
博碩士論文 etd-0721117-105129 詳細資訊
Title page for etd-0721117-105129
論文名稱
Title
氧化銅奈米粒子複合氧化鋅奈米管之非酶葡萄糖感測器
Non-Enzymatic Glucose Sensor with ZnO nanotubes/CuO Nanoparticles Composite
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
119
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-25
繳交日期
Date of Submission
2017-08-21
關鍵字
Keywords
氧化鋅奈米管、非酶葡萄糖感測器、水熱法、氧化銅奈米粒子、浸塗法
copper oxide nanoparticles, zinc oxide nanotubes, hydrothermal method, dip coating method, non-enzymatic glucose sensor
統計
Statistics
本論文已被瀏覽 5717 次,被下載 89
The thesis/dissertation has been browsed 5717 times, has been downloaded 89 times.
中文摘要
本研究主要探討氧化鋅奈米管與氧化銅奈米粒子雙層複合奈米結構,於ITO基板上堆疊製備之非酶葡萄糖感測器。奈米結構變化對於感測器的應用受到很大的關注,許多研究指出,雙層奈米結構的元件效能會大於單層奈米結構。本研究利用射頻濺鍍系統沉積氧化鋅與氧化銅種晶層,並利用水熱法成長氧化鋅奈米柱結構。透過化學溶液腐蝕法蝕刻出氧化鋅奈米管結構,再分別以二次水熱法與浸塗法生長氧化銅奈米結構,完成氧化銅奈米粒子/氧化鋅奈米管/ITO之雙層奈米結構。吾人分析單層結構與複合結構之物性與電性變化,以改善元件對於葡萄糖感測的表現。
實驗結果顯示,利用浸塗法以20mM濃度生長氧化銅之複合結構對葡萄糖具有最佳感測特性。在室溫下靈敏度為3.2 mAmM-1cm-2,線性感測範圍為0.1mM-6.5mM,R2值為0.9925。相比於單層結構提升了50%以上的靈敏度。主要歸因於複合結構造成的比表面積上升,大幅提高元件與待測物的接觸面積。高效能的葡萄糖感測器能應用於糖尿病檢測,對於食品工業也相當具有發展性。
Abstract
In this study, we primarily investigated the double-layered nanostructure of zinc oxide (ZnO) nanotubes and copper oxide (CuO) nanoparticles on ITO substrate for non-enzymatic glucose sensor. The variations of nanostructures for sensing applications have attracted much attention recently. Many studies show that multi-layered nanostructures have better performances than single one. We use RF sputtering system to deposit ZnO and CuO seed layers. ZnO nanotubes are grown by hydrothermal synthesis and etched by chemical solution. CuO nanoparticles are fabricated by a secondary hydrothermal method or dip coating. After the procedures, the devices with CuO nanoparticles/ZnO nanotubes /ITO are formed. We analyze the physical and electrical properties of the devices to improve the performances of glucose sensing.
The experimental results show that the composite nanostructure of copper oxide grown with 20 mM solution by dip coating has the best sensing performances. The sensitivity is 3.2 mAmM-1cm-2 and the linear sensing range is 0.1mM-6.5mM and R2 value of 0.9925 at room temperature. The sensitivity of the device has been enhanced for more than 50%. Due to the composite structure, the device has larger surface area and substantially increases the contact area with the object. The high-performance glucose sensor can be applied in the detection of diabetes and development of the food industry.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
表目錄 ix
圖目錄 x
第一章 緒論 1
1-1 前言 1
1-2 生醫感測器比較 2
1-3 材料介紹 5
1-3-1 氧化鋅(ZnO) 5
1-3-2 氧化銅(CuO) 5
1-3-3 葡萄糖 6
1.4 論文架構 6
第二章 理論分析 8
2-1 奈米結構生長原理 8
2-1-1 射頻磁控濺鍍法 8
2-1-2 水熱反應法 9
2-2 ZnO與CuO水熱法成長原理 9
2-2-1 ZnO水熱成長原理 9
2-2-2 CuO水熱成長原理 10
2-3 CuO浸塗法成長原理 11
2-4 濕式蝕刻理論 12
2-4-1 ZnO蝕刻機制與原理 13
2-5 葡萄糖感測器元件之組成 14
2-5-1 電化學法原理 14
2-5-2 電化學生物感測器種類 15
2-6 電化學式生物感測器分析方法 16
2-6-1 循環伏安法 16
2-6-2 時變安培法 16
2-6-3 非酶葡萄糖感測器 17
2-7 電極選用之原理 18
2-7-1 工作電極選用 18
2-7-2 參考電極選用 18
2-7-3 輔助電極選用 19
第三章 實驗方法與儀器 20
3-1 實驗材料與儀器 20
3-1-1 實驗材料 20
3-1-2 製程系統 21
3-2 量測系統 22
3-2-1 掃描式電子顯微鏡(FE-SEM) 22
3-2-2 XRD粉末繞射儀 23
3-2-3 KEITHLEY 2400半導體參數分析儀 23
3-2-4 葡萄糖量測系統 24
3-3 製程步驟 24
3-3-1 基板清洗 24
3-3-2 氧化鋅薄膜種子層濺鍍沉積 25
3-3-3 水熱法生長氧化鋅奈米結構 25
3-3-4 氧化鋅奈米結構蝕刻 25
3-3-5 氧化銅薄膜濺鍍沉積 26
3-3-6 二次水熱法生長氧化銅奈米結構 26
3-3-7 以浸塗法二次生長氧化銅奈米結構 27
第四章 結果與討論 29
4-1 物性分析 29
4-1-1 薄膜特性與參數選擇 29
4-1-2 氧化鋅水熱參數選擇 29
4-1-3 蝕刻氧化鋅對奈米結構參數選擇 30
4-1-4 氧化銅二次水熱參數選擇 30
4-1-5 氧化銅浸塗參數選擇 31
4-2 電化學掃描速率分析 32
4-3 電化學靈敏度分析 33
4-3-1 電化學靈敏度定義與反應機制 33
4-3-2 單層薄膜靈敏度分析 34
4-3-3 氧化鋅奈米柱靈敏度分析 34
4-3-4 氧化鋅奈米管靈敏度分析 34
4-3-5 二次水熱10mM氧化銅/ZnO奈米管/ITO靈敏度分析 35
4-3-6 二次水熱20mM氧化銅/ZnO奈米管/ITO靈敏度分析 36
4-3-7 浸塗10mM氧化銅/ZnO奈米管/ITO靈敏度分析 36
4-3-8 浸塗15mM氧化銅/ZnO奈米管/ITO靈敏度分析 37
4-3-9 浸塗20mM氧化銅/ZnO奈米管/ITO靈敏度分析 37
4-4 檢測上限分析 38
4-5 干擾物分析 38
4-6 研究成果比較 39
第五章 結論與未來展望 40
5-1 結論 40
5-2 未來展望 41
參考文獻 43
附表 49
附圖 52
參考文獻 References
[1] 世界衛生組織,“糖尿病” ,2016 。
[2] 廖國翔,“以含釕黃血鹽修飾碳糊電極應用於電流式過氧化氫感測器及葡萄糖生醫感測器之研究”,南台科技大學,碩士論文,2006
[3] Leland C. Clark jr., Champ Lyons, “Electrode systems for continuous monitoring in cardiovascular surgery,” Annals NEW YORK Academy of Science, Vol.102, pp.29-45, 1962
[4] 藍御維,“氧化鋅摻雜鋁薄膜修飾金電極之電流式葡萄糖生物感測器”,國立雲林科技大學光電工程研究所,碩士論文,2009。
[5] K. W. Lin, Y. K. Huang, H. L. Su, and T. Z. Hsieh, “In-channel simplified decoupler with renewable electrochemical detection for microchip capillary electrophoresis,” Analytica Chimica Acta, Vol.619, pp.115-121, 2008.
[6] 王柏欽,“利用修改之水熱法合成出海葵狀氧化鋅奈米結構應用於高敏感度的膽固醇生物感測器”,國立台南大學電機工程學系,碩士論文,2014。
[7] P. Bergveld, IEEE Transacations on Bionmedical Engineering, Vol.17, pp.07-71, 1970.
[8] P. Bergveld, IEEE Sensor Conference Toronto, pp.1-26, 2003.
[9] 謝振傑,“光纖生物感測器”,中華民國物理學會物理雙月刊(廿八卷四期),2006,pp.704-710。
[10] M. M. F. Choi, “Progress in Enzyme-Based Biosensors Using Optical Transducers,”, Microchimica Acta, Vol.148, pp.107-132, 2004.
[11] 劉盈村,“光纖式表面電漿子共振生醫微感測器”,台灣大學醫學工程研究所,碩士論文,2001。
[12] 李坤易,“高感度葡萄糖生物感測器之研究”,國立雲林科技大學化學工程系碩士班,碩士論文,2006。
[13] D. P. Norton, Y. W. Heo, M. P. Ivill, S. J. Pearton, M. F. Chisholm, T. Steiner, “ZnO: growth, doping & processing,”, Materials Today, pp.34–40, 2004.
[14] J. X. Wang, X. W. Sun, A. Wei, Y. Lei, X. P. Cai, C. M. Li, Z. L. Dong Appl, “Surface effects in a semiconductor photonic nanowire and spectral stability of an embedded single quantum dot,”, Phys. Lett, pp.233106–233108, 2006.
[15] A. Wei, X. W. Sun, J. X. Wang, Y. Lei, X. P. Cai, C. M. Li, Z. L. Dong, W. Huang, “Enzymatic Glucose Biosensor Based on ZnO Nanorod Array Grown by Hydrothermal Decomposition,” Appl. Phys. Lett, pp.123902–123904, 2006.
[16] B. Saravanakumar, R. Mohan, S. J. Kim J, “An investigation of the electrical properties of p-type Al:N Co-doped ZnO thin films,” Korean Phys, pp.1737–1741, 2012.
[17] B. Saravanakumar, R. Mohan, S. J. Kim, “Facile synthesis of graphene/ZnO nanocomposites by low temperature hydrothermal method,” Mater. Res. Bull, pp.878–883, 2013
[18] G.C. Yi, C.Wang,W.ParkSemicond, “ZnO nanorods: synthesis, characterization and applications,” Sci. Technol., pp.S22–S34,2005.
[19] M. Guo, P. Diao, S. Cai, “Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparing conditions,” J Solid State Chem., pp. 1864–1873, 2005.
[20] A. Fulati, S. M. Usman Ali, M. H. Asif, N. H. Alvi, M. Willander, C. Brännmark, P. Strålfors, S. I. Börjesson, F. Elinder, B. Danielsson, “An intracellular glucose biosensor based on nanoflake ZnO,” Sens. Actuators B, pp.673–680, 2010.
[21] E. Topoglidis, E. Palomares, Y. Astuti, A. Green, C. J. Campbell, J. R. Durrant , “Immobilization and Electrochemistry of Negatively Charged Proteins on Modified Nanocrystalline Metal Oxide Electrodes,” Electroanalysis, pp.1035–1041, 2005.
[22] L. C. Jiang, W. D. Zhang Biosens, “A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode,” Bioelectron., pp. 1402–1407, 2010.
[23] S. Luo, F. Su, C. Liu, J. Li, R. Liu, Y. Xiao, Y. Li, X. Liu, Q. Cai, “A new method for fabricating a CuO/TiO2 nanotube arrays electrode and its application as a sensitive nonenzymatic glucose sensor,” Talanta, pp.157–163, 2011.
[24] G. Wang, Y. Wei, W. Zhang, X. Zhang, B. Fang, L. Wang Microchim, “Robust Stability of Uncertain Takagi-Sugeno Fuzzy Systems with Time-varying Input-delay ,” Acta, pp. 87–92, 2010.
[25] N. Q. Dung, D. Patil, H. Jung, D. Ki Biosens, “A high-performance nonenzymatic glucose sensor made of CuO–SWCNT nanocomposites,” Bioelectron., pp.280–286, 2013.
[26] Z. J. Zhuang, X. D. Su, H. Y. Yuan, Q. Sun, D. Xiao, M. M. F. Choi, “An improved sensitivity nonenzymatic glucose sensor based on a CuO nanowire modified Cu electrode ,” Analyst, pp. 126–132, 2008.
[27] 莊達人,“VLSI製造技術”,高立圖書股份有限公司,1995。
[28] K. Govender, D. S. Boyle, P. B. Kenway, and P. O’Brien, “Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution,” Journal of Materials, pp. 2575-2591, 2004.
[29] R. W. Nosker, P. Mark, and J. D. Levine, “Polar surfaces of wurtzite and zincblende lattices,” Surface Science, pp.291-317, 1970.
[30] K Iwata, P Fons, S Niki, A Yamada,K Matsubara, K Nakahara, T Tanabe, H Takasu, “ZnO growth on Si by radical source MBE,” Journal of Crystal Growth, pp.50-54, June 2000.
[31] Z. H. Ibupoto a, K. Khun, X. Liu, M. Willander, “Low temperature synthesis of seed mediated CuO bundle of nanowires,their structural characterisation and cholesterol detection,” Materials Science and Engineering C, pp.3889-3898, May 2013.
[32] 施敏、張俊彥,“半導體元件與物理與製作技術”,高立圖書公司,1996。
[33] Fan Zhou, Weixuan Jing, Qiong Wu, Weizhuo Gao, Zhuangde Jiang, Jiafan Shi, Qibing Cui, “Effects of the surface morphologies of ZnO nanotube arrays on the performance of amperometric glucose sensors,” Materials Science in Semiconductor ProcessingVolume 56, pp.137–144, December 2016.
[34] Lifen Xu , Qing Liao , Jianping Zhang , Xicheng Ai , and Dongsheng Xu, “Single-Crystalline ZnO Nanotube Arrays on Conductive Glass Substrates by Selective Disolution of Electrodeposited ZnO Nanorods,” J. Phys. Chem. C, pp 4549–4552, 2007.
[35] 郭寶財,“以因子實驗設計分析乙二環戊二烯亞鐵修飾碳糊電極之反應參數對偵測過氧化氫的應答電流之影響及其應用於葡萄糖生醫感測器之研究”,南台科技大學化學工程研究所,碩士論文,2007。
[36] J. R. Stetter, and J. Li, “Amperometric Gas Sensors,” Chemical Reviews, pp.352-366, 2008.
[37] S. Park, T. D. Chung, H. C. kim, “Nonenzymatic Glucose Detection Using Mesoporous Platinum,” Anal. Chem, pp.3046-3049, 2003.
[38] T. Bai, Y. Sun, C. Sun, “Pt-Pb Nanowire Array Electrode for Enzyme-Free Glucose DetectionBiosens,” Bioelectron,pp.579-585, 2008.
[39] M. Krzywiecki , L. Grządziel, H. Peisert, I. Biswas, T. Chassé, J. Szuber , “X-ray Photoelectron Spectroscopy characterization of native and RCA-treated Si (111) substrates and their influence on surface chemistry of copper phthalocyanine thin films,” Thin Solid Films, Volume 518, Issue 10, pp.2688–2694, March 2010.
[40] Xiuqin Zhao, Jae Yeop Lee, Cho-Rong Kim, Joohoe Heo, Chang Mi Shin, Jae-Young Leem, Hyukhyun Ryu, Ji-Ho Chang, Hong Chan Lee, Woo-Gwang Jung, Chang-Sik Son, Byoung Chul Shin, Won-Jae Lee, Swee Tiam Tan, Junliang Zhao, Xiaowei Sun, “Effects of the annealing duration of the ZnO buffer layer on structural and optical properties of ZnO rods grown by a hydrothermal process,” Dependence of the properties of hydrothermally grown ZnO on precursor concentration,” Physica E: Low-dimensional Systems and Nanostructures, Volume 41, Issue 8, pp.1423–1426, August 2009.
[41] A.J. Bard,and L. R. Faulkner, “Electrochemical methods :Fundamentals and applications ,” 2nd Edition , New York :John Wiley&Sons, 2000.
[42] N. Q. Dung, D. Patil, H. Jung, D. Kim, “A high-performance nonenzymatic glucosesensor made of CuO–SWCNT nanocomposites, ”Biosens.Bioelectron, pp.280–286, 2013.
[43] J. Yang, L. C. Jiang, W. D. Zhang, S. Gunasekaran, “A highly sensitive non-enzymaticglucose sensor based on a simple two-step electrodeposition of cupric oxide(CuO) nanoparticles onto multi-walled carbon nanotube arrays, ” Talanta, pp.25–33, 2010.
[44] L. C. Jiang, W. D. Zhang, “A highly sensitive nonenzymatic glucose sensor based onCuO nanoparticles-modified carbon nanotube electrode,” Biosens. Bioelectron, pp.1402–1407, 2010.
[45] J. Zhang, N. N. Ding, J. Y. Cao, W. C. Wang, Z. D. Chen, “In situ attachment of cupricoxide nanoparticles to mesoporous carbons for sensitive amperometric non-enzymatic sensing of glucose, ”Sens. Actuators B, pp.125–131, 2013.
[46] J. Zhang, X. L. Zhu, H. F. Dong, X. J. Zhang, W. C. Wang, Z. D. Chen, “In situ growthcupric oxide nanoparticles on carbon nanofibers for sensitive nonenzymaticsensing of glucose,” Electrochim. Acta, pp.433–438, 2013.
[47] Jing Zhang, Jianlei Ma, Shibo Zhang, Wenchang Wang, Zhidong Chen, “A highly sensitive nonenzymatic glucose sensor based on CuOnanoparticles decorated carbon spheres, ” Sensors and Actuators B, 385–391, 2015.
[48] A. Sun, J. Zheng, Q. Sheng, “A highly sensitive non-enzymatic glucose sensor based on nickel and multi-walled carbon nanotubes nanohybrid films fabricated by one-step-co-electrodeposition in ionic liquids, ”Electrochim.Acta, pp.64–69, 2012.
[49] T. Kong, Y. Chen, Y. P. Ye, K. Zhang, Z. X. Wang, X. P. Wang, “An amperometricglucose biosensor based on the immobilization of glucose oxidase on the ZnOnanotubes, ” Sens. Actuator B Chem, pp.344–350, 2009.
[50] M. Ahmad, C. Pan, Z. Luo, J. Zhu, “A single ZnO nanofiber-based highly sensitiveamperometric glucose biosensor,” J. Phys. Chem, pp.9308–9313, 2010.
[51] 呂志倫,“幾丁聚醣輔助金奈米粒子修飾氧化銦錫電極之葡萄糖感測器”,國立交通大學應用化學研究所,碩士論文,2009。
[52] 羅濟玟,“以Meldola’sBlue修飾碳糊電極之反應參數對偵測過氧化氫的應答電流之影響”,南台科技大學化學工程與材枓工程系,碩士論文,2008。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code