Responsive image
博碩士論文 etd-0721117-124213 詳細資訊
Title page for etd-0721117-124213
論文名稱
Title
探討肝癌衍生生長因子誘發氧化壓力機制之研究
The mechanism of Hepatoma-Derived Growth Factor (HDGF)-mediated ROS generation in hepatoma cells
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
54
研究生
Author
指導教授
Advisor
召集委員
Convenor

口試委員
Advisory Committee
口試日期
Date of Exam
2017-08-04
繳交日期
Date of Submission
2017-08-21
關鍵字
Keywords
活性氧群、肝癌衍生生長因子、肝癌細胞
Hepatoma-derived growth factor, Reactive oxygen species, Hepatocellular carcinoma
統計
Statistics
本論文已被瀏覽 5756 次,被下載 28
The thesis/dissertation has been browsed 5756 times, has been downloaded 28 times.
中文摘要
肝癌衍生生長因子(HDGF)在過去文獻指出會誘發許多腫瘤細胞的增殖、與加強細胞的侵入作用。而且,HDGF高度表現與患者的腫瘤進展、轉移和預後較差有關。而HDGF誘導腫瘤生長過程中,其訊息傳遞的機制尚未明確。活性氧群 (ROS)在正常生理功能下會促進細胞的生長,而在病理情況下,則會使ROS處於不穩定的狀態,其表現量過高或過低都會對細胞產生一些危害(像是老化或是癌化等等)。 HDGF促進細胞ROS的產生主要是發生在粒線體,然而HDGF誘發ROS的上升會因為粒線體電子傳遞鏈的抑制劑寡黴素存在下而被抑制。本研究目的主要是利用SK-Hep-1肝癌細胞來觀察HDGF誘導腫瘤生長過程中,ROS扮演的角色與探討其相關路徑。透過螢光偵測分析得知,ROS的表現量會隨著HDGF的劑量而有上升的趨勢(包括超氧化物陰離子和二氧化氫)。
  HDGF誘發粒線體ROS上升與自由基清除基因表現量上升有很大的關係,包含超氧化物歧化酶2(SOD2)和過氧化氫酶 (Catalase),但SOD1並無明顯參與其中。 HDGF會促進磷酸化Akt和核因子κB(NFB)的表現量,當外加HDGF的表面受體Nucleolin (NCL) 抗體時,會抑制HDGF誘導NFκB和SOD2的表現量,而外加NFκB的抑制劑Bay11-7082進一步證實HDGF經由NFκB路徑誘發SOD2表現。本研究證實,HDGF誘發NCL-NFκB-SOD2的訊息傳遞路徑以響應HDGF誘導的粒線體ROS升高,這可能有助於改變粒線體動力學和細胞致瘤性。
Abstract
Hepatoma-derived growth factor (HDGF) has been shown to stimulate the proliferation, invasion, anchorage-independent growth in various types of cancer. In addition, HDGF overexpression is associated with tumor progression, metastasis and poor prognosis in cancer patients. The signaling and mechanism underlying HDGF-induced tumorigenesis is far from elucidation. Generation of cellular reactive oxygen species (ROS) is tightly regulated and plays a pivotal role in regulating the cellular functions as well as neoplastic transformation. The present study aimed to investigate the role of ROS production and the related pathways during HDGF-mediated tumorigenesis using SK-Hep-1 hepatoma cells. By using luminometer assay, it was observed application of HDGF dose-dependently increases the cellular ROS levels (including superoxide anion and hydrogen dioxide) in SK-Hep-1 cells. Besides, HDGF stimulated the mitochondrial ROS production, which was disrupted by electron transport inhibitor oligomycin. The HDGF-evoked mitochondrial ROS was associated with elevated expression of free radicals scavenger genes including superoxide dismutase 2 (SOD2) and catalase, but not SOD1. Exogenous HDGF protein treatment potently increased the expression of nucleolin (NCL), Akt phosphorylation and activities of nuclear factor kappa B (NFκB). Antibody neutralization of NCL abolished the HDGF-stimulated NFκB and SOD2 expression. Moreover, treatment with NFκB inhibitor reversed the HDGF-induced SOD2 upregulation. In summary, we herewith purposed that HDGF stimulates the NCL-NFκB-SOD2 signaling pathway in response to mitochondrial ROS rise, which may contribute to alterations in mitochondria dynamics and cellular tumorigenicity.
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
誌謝 iii
摘要 iv
Abstract v
Introduction 1
Materials and methods 8
Results 14
Discussion 20
Figures and legends 23
References 36
參考文獻 References
1. Wallace, M.C., et al., The evolving epidemiology of hepatocellular carcinoma: a global perspective. Expert Rev Gastroenterol Hepatol, 2015. 9(6): p. 765-79.
2. Jemal, A., et al., Global cancer statistics. CA Cancer J Clin, 2011. 61(2): p. 69-90.
3. El-Serag, H.B. and J.A. Davila, Surveillance for hepatocellular carcinoma: in whom and how? Therap Adv Gastroenterol, 2011. 4(1): p. 5-10.
4. Farazi, P.A. and R.A. DePinho, Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer, 2006. 6(9): p. 674-87.
5. El-Serag, H.B., Hepatocellular carcinoma. N Engl J Med, 2011. 365(12): p. 1118-27.
6. Taketomi, A., et al., Improved results of a surgical resection for the recurrence of hepatocellular carcinoma after living donor liver transplantation. Ann Surg Oncol, 2010. 17(9): p. 2283-9.
7. Taketomi, A., et al., Predictors of extrahepatic recurrence after curative hepatectomy for hepatocellular carcinoma. Ann Surg Oncol, 2010. 17(10): p. 2740-6.
8. Bruix, J., M. Reig, and M. Sherman, Evidence-Based Diagnosis, Staging, and Treatment of Patients With Hepatocellular Carcinoma. Gastroenterology, 2016. 150(4): p. 835-53.
9. Prieto, J., I. Melero, and B. Sangro, Immunological landscape and immunotherapy of hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol, 2015. 12(12): p. 681-700.
10. Bruix, J., et al., Adjuvant sorafenib for hepatocellular carcinoma after resection or ablation (STORM): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Oncol, 2015. 16(13): p. 1344-54.
11. Taketomi, A., Clinical trials of antiangiogenic therapy for hepatocellular carcinoma. Int J Clin Oncol, 2016. 21(2): p. 213-8.
12. Nakamura, H., et al., Partial purification and characterization of human hepatoma-derived growth factor. Clin Chim Acta, 1989. 183(3): p. 273-84.
13. Bao, C., et al., HDGF: a novel jack-of-all-trades in cancer. Future Oncol, 2014. 10(16): p. 2675-85.
14. Nameki, N., et al., Solution structure of the PWWP domain of the hepatoma-derived growth factor family. Protein Sci, 2005. 14(3): p. 756-64.
15. Stec, I., et al., The PWWP domain: a potential protein-protein interaction domain in nuclear proteins influencing differentiation? FEBS Lett, 2000. 473(1): p. 1-5.
16. Lukasik, S.M., et al., High resolution structure of the HDGF PWWP domain: a potential DNA binding domain. Protein Sci, 2006. 15(2): p. 314-23.
17. Yang, J. and A.D. Everett, Hepatoma-derived growth factor binds DNA through the N-terminal PWWP domain. BMC Mol Biol, 2007. 8: p. 101.
18. Abouzied, M.M., et al., Hepatoma-derived growth factor. Significance of amino acid residues 81-100 in cell surface interaction and proliferative activity. J Biol Chem, 2005. 280(12): p. 10945-54.
19. Destouches, D., et al., Suppression of tumor growth and angiogenesis by a specific antagonist of the cell-surface expressed nucleolin. PLoS One, 2008. 3(6): p. e2518.
20. Joo, E.J., et al., Induction of nucleolin translocation by acharan sulfate in A549 human lung adenocarcinoma. J Cell Biochem, 2010. 110(5): p. 1272-8.
21. Chen, S.C., et al., Hepatoma-derived growth factor/nucleolin axis as a novel oncogenic pathway in liver carcinogenesis. Oncotarget, 2015. 6(18): p. 16253-70.
22. Kishima, Y., et al., Hepatoma-derived growth factor stimulates cell growth after translocation to the nucleus by nuclear localization signals. J Biol Chem, 2002. 277(12): p. 10315-22.
23. Thakar, K., et al., Secretion of hepatoma-derived growth factor is regulated by N-terminal processing. Biol Chem, 2010. 391(12): p. 1401-10.
24. Everett, A.D., et al., Mitotic phosphorylation activates hepatoma-derived growth factor as a mitogen. BMC Cell Biol, 2011. 12: p. 15.
25. Everett, A.D., T. Stoops, and C.A. McNamara, Nuclear targeting is required for hepatoma-derived growth factor-stimulated mitogenesis in vascular smooth muscle cells. J Biol Chem, 2001. 276(40): p. 37564-8.
26. Everett, A.D., et al., Hepatoma-derived growth factor is a pulmonary endothelial cell-expressed angiogenic factor. Am J Physiol Lung Cell Mol Physiol, 2004. 286(6): p. L1194-201.
27. Zhang, J., et al., Down-regulation of hepatoma-derived growth factor inhibits anchorage-independent growth and invasion of non-small cell lung cancer cells. Cancer Res, 2006. 66(1): p. 18-23.
28. Okuda, Y., et al., Hepatoma-derived growth factor induces tumorigenesis in vivo through both direct angiogenic activity and induction of vascular endothelial growth factor. Cancer Sci, 2003. 94(12): p. 1034-41.
29. European Association for the Study of, L., EASL clinical practical guidelines: management of alcoholic liver disease. J Hepatol, 2012. 57(2): p. 399-420.
30. Yoshida, K., et al., Expression of hepatoma-derived growth factor in hepatocarcinogenesis. J Gastroenterol Hepatol, 2003. 18(11): p. 1293-301.
31. Yamamoto, S., et al., Expression of hepatoma-derived growth factor is correlated with lymph node metastasis and prognosis of gastric carcinoma. Clin Cancer Res, 2006. 12(1): p. 117-22.
32. Thirant, C., et al., Differential proteomic analysis of human glioblastoma and neural stem cells reveals HDGF as a novel angiogenic secreted factor. Stem Cells, 2012. 30(5): p. 845-53.
33. Guo, Z., et al., Various effects of hepatoma-derived growth factor on cell growth, migration and invasion of breast cancer and prostate cancer cells. Oncol Rep, 2011. 26(2): p. 511-7.
34. Yang, G.Y., et al., Hepatoma-derived growth factor promotes growth and metastasis of hepatocellular carcinoma cells. Cell Biochem Funct, 2016. 34(4): p. 274-85.
35. Mao, J., et al., Hepatoma-derived growth factor involved in the carcinogenesis of gastric epithelial cells through promotion of cell proliferation by Erk1/2 activation. Cancer Sci, 2008. 99(11): p. 2120-7.
36. Chen, S.C., et al., Hepatoma-derived growth factor regulates breast cancer cell invasion by modulating epithelial--mesenchymal transition. J Pathol, 2012. 228(2): p. 158-69.
37. Enomoto, H., et al., Hepatoma-Derived Growth Factor: Its Possible Involvement in the Progression of Hepatocellular Carcinoma. Int J Mol Sci, 2015. 16(6): p. 14086-97.
38. Cilley, R.E., S.E. Zgleszewski, and M.R. Chinoy, Fetal lung development: airway pressure enhances the expression of developmental genes. J Pediatr Surg, 2000. 35(1): p. 113-8; discussion 119.
39. Everett, A.D., Identification, cloning, and developmental expression of hepatoma-derived growth factor in the developing rat heart. Dev Dyn, 2001. 222(3): p. 450-8.
40. Enomoto, H., et al., Hepatoma-derived growth factor is highly expressed in developing liver and promotes fetal hepatocyte proliferation. Hepatology, 2002. 36(6): p. 1519-27.
41. Lepourcelet, M., et al., Insights into developmental mechanisms and cancers in the mammalian intestine derived from serial analysis of gene expression and study of the hepatoma-derived growth factor (HDGF). Development, 2005. 132(2): p. 415-27.
42. Hu, T.H., et al., Expression of hepatoma-derived growth factor in hepatocellular carcinoma. Cancer, 2003. 98(7): p. 1444-56.
43. Yoshida, K., et al., Hepatoma-derived growth factor is a novel prognostic factor for hepatocellular carcinoma. Ann Surg Oncol, 2006. 13(2): p. 159-67.
44. Ren, H., et al., Expression of hepatoma-derived growth factor is a strong prognostic predictor for patients with early-stage non-small-cell lung cancer. J Clin Oncol, 2004. 22(16): p. 3230-7.
45. Uyama, H., et al., Hepatoma-derived growth factor is a novel prognostic factor for patients with pancreatic cancer. Clin Cancer Res, 2006. 12(20 Pt 1): p. 6043-8.
46. Yamamoto, S., et al., Expression level of hepatoma-derived growth factor correlates with tumor recurrence of esophageal carcinoma. Ann Surg Oncol, 2007. 14(7): p. 2141-9.
47. Chang, K.C., et al., Hepatoma-derived growth factor is a novel prognostic factor for gastrointestinal stromal tumors. Int J Cancer, 2007. 121(5): p. 1059-65.
48. Trachootham, D., J. Alexandre, and P. Huang, Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov, 2009. 8(7): p. 579-91.
49. Wang, S. and W. Fang, Increased expression of hepatoma-derived growth factor correlates with poor prognosis in human nasopharyngeal carcinoma. Histopathology, 2011. 58(2): p. 217-24.
50. Liu, Y.F., et al., Expression and clinical significance of hepatoma-derived growth factor as a prognostic factor in human hilar cholangiocarcinoma. Ann Surg Oncol, 2011. 18(3): p. 872-9.
51. Hsu, S.S., et al., Tumorigenesis and prognostic role of hepatoma-derived growth factor in human gliomas. J Neurooncol, 2012. 107(1): p. 101-9.
52. Lin, Y.W., et al., The expression and prognostic significance of hepatoma-derived growth factor in oral cancer. Oral Oncol, 2012. 48(7): p. 629-35.
53. Meng, J., et al., shRNA targeting HDGF suppressed cell growth and invasion of squamous cell lung cancer. Acta Biochim Biophys Sin (Shanghai), 2010. 42(1): p. 52-7.
54. Shih, T.C., et al., MicroRNA-214 downregulation contributes to tumor angiogenesis by inducing secretion of the hepatoma-derived growth factor in human hepatoma. J Hepatol, 2012. 57(3): p. 584-91.
55. Liao, F., W. Dong, and L. Fan, Apoptosis of human colorectal carcinoma cells is induced by blocking hepatoma-derived growth factor. Med Oncol, 2010. 27(4): p. 1219-26.
56. Tsang, T.Y., et al., Mechanistic study on growth suppression and apoptosis induction by targeting hepatoma-derived growth factor in human hepatocellular carcinoma HepG2 cells. Cell Physiol Biochem, 2009. 24(3-4): p. 253-62.
57. Tsang, T.Y., et al., Downregulation of hepatoma-derived growth factor activates the Bad-mediated apoptotic pathway in human cancer cells. Apoptosis, 2008. 13(9): p. 1135-47.
58. Karihtala, P. and Y. Soini, Reactive oxygen species and antioxidant mechanisms in human tissues and their relation to malignancies. APMIS, 2007. 115(2): p. 81-103.
59. Tsanou, E., et al., Immunohistochemical expression of superoxide dismutase (MnSOD) anti-oxidant enzyme in invasive breast carcinoma. Histol Histopathol, 2004. 19(3): p. 807-13.
60. Yang, Y., et al., Reactive oxygen species in cancer biology and anticancer therapy. Curr Med Chem, 2013. 20(30): p. 3677-92.
61. Le Bras, M., et al., Reactive oxygen species and the mitochondrial signaling pathway of cell death. Histol Histopathol, 2005. 20(1): p. 205-19.
62. Liou, G.Y. and P. Storz, Reactive oxygen species in cancer. Free Radic Res, 2010. 44(5): p. 479-96.
63. Gibellini, L., et al., Interfering with ROS Metabolism in Cancer Cells: The Potential Role of Quercetin. Cancers (Basel), 2010. 2(2): p. 1288-311.
64. Taguchi, K., H. Motohashi, and M. Yamamoto, Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes Cells, 2011. 16(2): p. 123-40.
65. Tiligada, E., Chemotherapy: induction of stress responses. Endocr Relat Cancer, 2006. 13 Suppl 1: p. S115-24.
66. Zelko, I.N., T.J. Mariani, and R.J. Folz, Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med, 2002. 33(3): p. 337-49.
67. Dhar, S.K. and D.K. St Clair, Manganese superoxide dismutase regulation and cancer. Free Radic Biol Med, 2012. 52(11-12): p. 2209-22.
68. Storz, P., Reactive oxygen species in tumor progression. Front Biosci, 2005. 10: p. 1881-96.
69. Gough, D.R. and T.G. Cotter, Hydrogen peroxide: a Jekyll and Hyde signalling molecule. Cell Death Dis, 2011. 2: p. e213.
70. Sikka, S.C. and W.J. Hellstrom, Role of oxidative stress and antioxidants in Peyronie's disease. Int J Impot Res, 2002. 14(5): p. 353-60.
71. Montibus, M., et al., Coupling of transcriptional response to oxidative stress and secondary metabolism regulation in filamentous fungi. Crit Rev Microbiol, 2015. 41(3): p. 295-308.
72. Xia, C., et al., Reactive oxygen species regulate angiogenesis and tumor growth through vascular endothelial growth factor. Cancer Res, 2007. 67(22): p. 10823-30.
73. Konzack, A., et al., Mitochondrial Dysfunction Due to Lack of Manganese Superoxide Dismutase Promotes Hepatocarcinogenesis. Antioxid Redox Signal, 2015. 23(14): p. 1059-75.
74. Kinugasa, H., et al., Mitochondrial SOD2 regulates epithelial-mesenchymal transition and cell populations defined by differential CD44 expression. Oncogene, 2015. 34(41): p. 5229-39.
75. Sedlmaier, A., et al., Overexpression of hepatoma-derived growth factor in melanocytes does not lead to oncogenic transformation. BMC Cancer, 2011. 11: p. 457.
76. Fiaschi, T. and P. Chiarugi, Oxidative stress, tumor microenvironment, and metabolic reprogramming: a diabolic liaison. Int J Cell Biol, 2012. 2012: p. 762825.
77. Simon, H.U., A. Haj-Yehia, and F. Levi-Schaffer, Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis, 2000. 5(5): p. 415-8.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code