Responsive image
博碩士論文 etd-0721117-144818 詳細資訊
Title page for etd-0721117-144818
論文名稱
Title
利用分子動力學探討電場極化對聚偏二氟乙烯與奈米碳管複合物之微觀結構與機械性質的影響
Investigation of Microstructure and Mechanical Properties of Polyvinylidene Fluoride/Carbon Nanotubes Composite which is Effected by Electric Field Polarization: A Molecular Dynamics study
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
77
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-28
繳交日期
Date of Submission
2017-08-21
關鍵字
Keywords
分子動力學、聚偏氟乙烯、奈米碳管、微觀結構、機械性質
Microstructure, CNT, Mechanical property, PVDF, Molecular dynamics
統計
Statistics
本論文已被瀏覽 5660 次,被下載 121
The thesis/dissertation has been browsed 5660 times, has been downloaded 121 times.
中文摘要
本研究利用分子動力學模擬探討在無/有電場極化下純聚偏氟乙烯(Polyvinylidene fluoride, PVDF)和混合不同比例(4.49 wt%、9.34 wt%及13.23 wt%)的奈米碳管(Carbon Nanotube, CNT )複合物之機械性質與微觀結構變化。為了確保模擬能夠預測出真實材料的物理性質,透過純PVDF系統之密度、溶解度參數與實驗結果做比較,其皆在可接受的誤差範圍內,表示本次研究所建立之分子模型與選用的勢能函數是合理的。此外,分析平衡結構的兩面角分佈,發現透過高溫退火的操作,可以使得結構中β相提升約25%,而結構再經電場極化後,可再進一步誘導約10%的β相形成。模擬拉伸的結果顯示,在PVDF添加CNTs或施加電場使其極化,都可以有效改善純PVDF的楊氏模數(Young’s modulus)以及最大抗拉強度(ultimate tensile strength)。但當碳管添加比例達到13.23 wt%,其機械性質反而會下降。在區域應變與孔隙率的分析,雖然CNTs可以補強局部PVDF的強度,但隨CNTs的含量較高時,其結構脆性亦隨之增加,容易形成孔隙與破裂。然而藉由電場極化,可以有效降低孔隙的生成,且延展性也較佳。再者,拉伸過程可以促進PVDF碳鏈形成trans構型,但在受到電場極化後,拉伸對形成trans構型的增益變的較不明顯。本研究結果可作為設計相關比例之奈米添加劑與各種聚合物混合之參考依據,試圖克服奈米複合物模擬所遭遇之瓶頸。
Abstract
In this work, the molecular dynamics simulation (MD) simulation was proposed to investigate the microstructure and mechanical properties of pure Polyvinylidene fluoride (PVDF) and PVDF/Carbon Nanotube (CNT) composites(4.49 wt%, 9.34%, 13.23 wt% of CNTs) which are effected by electric field. For proving that the Dreiding force field can well describe the PVDF material, the density and solubility parameters of the pure PVDF system are predicted and compared with the experimental results. According to the results of annealing simulation, the formation of β phase have been increase about 25% during the annealing procedure both in pure PVDF and PVDF/CNTs composite case. The content of β phase in PVDF and PVDF/CNTs composite have been further enhance around 10% under the electric field. According the stress-strain profiles from the tensile simulation, the Young’s modulus and ultimate tensile strength of pure PVDF can be improved by blending with CNTs and polarized by electric field. But the mechanical properties of PVDF/CNTs composite has reduce when the blending ratio of CNTs over 13.23 wt%. The analysis of local shear strain and porosity indicate that the strength of PVDFs which around CNTs have been enhanced but the structure became brittle when CNTs weight fraction increased and easy to be fractured. Moreover, the generation of pores can be effectively reduced and the ductility was also improved due to the applied electric field. The trans configuration ratio in PVDF and PVDF/CNTs composite have been increase during the tensile process, but such enhancement are reduced in electric field polarization system. By taking advantage of this molecular simulation procedure, The properties of PVDF/CNT composites could be fast predicted, and the simulation results can investigate the material in atomistic-level and also provide new pathway to reduce the cost and research time in experiments.
目次 Table of Contents
目 錄
論文審定書 i
論文公開授權書 ii
誌謝 iii
中文摘要 iv
Abstract v
圖次 viii
表次 x
第一章 緒論 1
1.1研究動機與目的 1
1.2聚偏氟乙烯與奈米碳管簡介 2
1.2.1聚偏氟乙烯 2
1.2.2奈米碳管 5
1.3文獻回顧 6
1.4本文架構 9
第二章 模擬方法與理論介紹 10
2.1 分子動力學 10
2.1.1 DREIDING力場 11
2.1.2 運動方程式 13
2.1.3 積分法則 14
2.1.4 系綜 15
2.1.5 諾斯-胡佛恆溫法 16
第三章 數值模擬方法 17
3.1 週期性邊界 17
3.2 鄰近原子表列法 18
3.2.1 截斷半徑法 (Cut-off method) 18
3.2.2 維理表列法 (Verlet list) 19
3.2.3 巢室表列法 (Cell Link) 20
3.2.4 維理表列法結合巢室表列法 21
3.3 分子動力學流程圖 22
3.4 統計之參數計算 25
3.4.1 兩面角分佈 (Distribution of dihedral angles) 25
3.4.2分子表面網格 (surface mesh)的建構 27
3.4.3 區域應變分析 (Local shear strain) 28
3.4.4原子級應力計算理論 29
第四章 結果分析與討論 30
4.1 聚偏氟乙烯混和奈米碳管之物理模型 30
4.1.1 純聚偏氟乙烯與奈米碳管分子的建立 30
4.1.2 聚偏氟乙烯與混入不同比例奈米碳管之模型建立 32
4.1.3 電場下之聚偏氟乙烯與混入不同比例奈米碳管之模型建立 36
4.1.4平衡結構之C-C-C-C兩面角分佈 40
4.2拉伸試驗與機械性質探討 44
4.2.1 拉伸模型建立 44
4.2.2 應力應變圖 44
4.2.3 區域應變圖 48
4.2.4 孔隙率分析 53
4.2.5 拉伸過程之兩面角分佈 55
第五章 結論與未來展望 57
5.1 結論 57
5.2 未來展望 58
參考文獻 59

圖次
圖1-1 聚偏氟乙烯化學式 4
圖1-2 聚偏氟乙烯示意圖 4
圖1-3 (a)無壓電性的α相結構以及(b)有壓電性的β相結構 4
圖1-4 (a)奈米碳管示意圖、(b)掃描式電子顯微鏡(SEM)下之奈米碳管及(c)穿透式電子顯微鏡(TEM)下之奈米碳管 5
圖2-1 Velocity Verlet積分法則積分流程示意圖 14
圖3-1 週期性邊界示意圖 17
圖3-2 截斷半徑法示意圖 18
圖3-3 維理表列法示意圖 19
圖3-4 巢室表列法示意圖 20
圖3-5 維理表列結合巢室表列法示意圖 21
圖3-6 分子動力學之流程圖 22
圖3-7模擬退火之流程圖 23
圖3-8模擬拉伸試驗之流程圖 24
圖3-9 PVDF之(a)α相結構(TGTG')及(b)β相結構(TGTG' TTTT)示意圖 26
圖4-1 單一條α-聚偏氟乙烯之結構,其中灰色為碳原子(C)、淡藍色為氟原子(F)、白為氫原子 31
圖4-2 (5,5)單壁奈米碳管之(a)橫面及(b)縱面 31
圖4-3 (a)純PVDF與PVDF混合(b) 4.49 wt%、(c) 9.34 wt%及(d) 13.23 wt%的CNTs複合物在無電場下之穩定結構示意圖。左半部為完整全原子模型,其中灰色為碳原子(C)、淡藍色為氟原子(F)、白色為氫原子(H),CNTs為紅色。右半部將全原子模型中的PVDF隱藏以便觀察CNTs在空間中的分佈,不同的CNT給予獨立的顏色。 35
圖4-4 (a)純PVDF與PVDF混合(b) 4.49 wt%、(c) 9.34 wt%及(d) 13.23 wt%的CNTs複合物在電場下極化後穩定結構示意圖。左半部為完整全原子模型,其中灰色為碳原子(C)、淡藍色為氟原子(F)、白色為氫原子(H),CNTs為紅色。右半部將全原子模型中的PVDF隱藏以便觀察CNTs在空間中的分佈,不同的CNT給予獨立的顏色。 38
圖4-5純PVDF系統之中單獨第12條分子在(a)無電場、(b)電場極化後之穩定結構示意圖 39
圖4-6純PVDF及不同混合比例下PVDF/CNTs複合物在(a)無電場及(b)電場極化下之兩面角分佈 43
圖4-7純PVDF與混合不同比例CNTs系統於(a)無電場及(b)有電場極化後之應力應變圖 47
圖4-8 純PVDF在應變為(a) 0.0198、(b) 0.0617、(c) 0.1165、(d) 0.1295、(e) 0.1598和(f) 0.1988下的區域應變圖。 50
圖4-9 PVDF/CNTs(9.34%)在應變為(a) 0.0192、(b) 0.0673、(c) 0.1041、(d) 0.1116、(e) 0.1516和(f) 0.1966下的區域應變圖。 51
圖4-10電場極化後之純PVDF在應變為(a) 0.0198、(b) 0.1176及(c) 0.1999下的區域應變圖。 52
圖4-11 電場極化後之PVDF/CNTs(9.34%)在應變為(a) 0.0199、(b) 0.1127及(c) 0.1999下的區域應變圖。 52
圖4-12 純PVDF與混合不同比例CNTs系統在(a)無電場及(b)有電場極化後於不同應變下的孔隙率變化 54
圖4- 13 純PVDF與混合不同比例CNTs系統在(a)無電場及(b)有電場極化後於不同應變下的系統trans構型比例變化 56

表次
表2-1 DREIDING力場對應符號表 12
表2-2 常見的分子動力學系綜平均模擬準則 15
表4-1 模擬分子之詳細資訊 31
表4-2 不同複合系統之詳細資訊 33
表4-3 PVDF模擬結果與實驗結果比較表 33
表4-4 純PVDF與混合不同比例CNTS複合物之擬合參數 42
表4-5 純PVDF及不同混合比例下PVDF/CNTS複合物之擬合參數 42
表4-6 無電場下之純PVDF與混合不同比例CNTS下之機械性質 46
表4-7 電場極化後之純PVDF與混合不同比例CNTS之機械性質 46
參考文獻 References
1. Elvin, N.G., A.A. Elvin, and M. Spector, A self-powered mechanical strain energy sensor. Smart Materials and structures, 2001. 10(2): p. 293.
2. Umeda, M., K. Nakamura, and S. Ueha, Energy storage characteristics of a piezo-generator using impact induced vibration. Japanese journal of applied physics, 1997. 36(5S): p. 3146.
3. Starner, T. and J.A. Paradiso, Human generated power for mobile electronics. Low power electronics design, 2004. 45: p. 1-35.
4. Pillatsch, P., et al., Degradation of bimorph piezoelectric bending beams in energy harvesting applications. Smart Materials and Structures, 2017. 26(3): p. 035046.
5. Vinogradov, A. and F. Holloway, Electro-mechanical properties of the piezoelectric polymer PVDF. Ferroelectrics, 1999. 226(1): p. 169-181.
6. Nagai, M., et al., Enhanced electrical properties of highly oriented poly (vinylidene fluoride) films prepared by solid‐state coextrusion. Journal of Polymer Science Part B: Polymer Physics, 1999. 37(18): p. 2549-2556.
7. Schmidt, V.H., et al., Piezoelectric polymer actuators for vibration suppression. Proceedings of the SPIE: Smart Structures and Materials 1999: Electroactive Polymer Actuators and Devices (EAPAD), 1999. 3669: p. 162-170.
8. Wang, D., et al., Using PVDF piezoelectric film sensors for in situ measurement of stayed-cable tension of cable-stayed bridges. Smart materials and structures, 1999. 8(5): p. 554.
9. Yu, H., et al., Enhanced power output of an electrospun PVDF/MWCNTs-based nanogenerator by tuning its conductivity. Nanotechnology, 2013. 24(40): p. 405401.
10. Chanunpanich, N., B. Lee, and H. Byun, A study of electrospun PVDF on PET sheet. Macromolecular research, 2008. 16(3): p. 212-217.
11. Chang, C., Y.-K. Fuh, and L. Lin. A direct-write piezoelectric PVDF nanogenerator. in Solid-State Sensors, Actuators and Microsystems Conference, 2009. TRANSDUCERS 2009. International. 2009. IEEE.
12. Foster, F.S., K.A. Harasiewicz, and M.D. Sherar, A history of medical and biological imaging with polyvinylidene fluoride (PVDF) transducers. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2000. 47(6): p. 1363-1371.
13. Liu, Z., et al., Piezoelectric properties of PVDF/MWCNT nanofiber using near-field electrospinning. Sensors and Actuators A: Physical, 2013. 193: p. 13-24.
14. Shirinov, A. and W. Schomburg, Pressure sensor from a PVDF film. Sensors and Actuators A: Physical, 2008. 142(1): p. 48-55.
15. Tang, X.G., et al., The preparation, structures, and properties of poly (vinylidene fluoride)/multiwall carbon nanotubes nanocomposites. Journal of Applied Polymer Science, 2012. 125(S1).
16. Lee, J.S., et al., Crystal structure and ferroelectric properties of poly (vinylidene fluoride)-carbon nano tube nanocomposite film. Molecular Crystals and Liquid Crystals, 2008. 491(1): p. 247-254.
17. Ahn, Y., et al., Enhanced piezoelectric properties of electrospun poly (vinylidene fluoride)/multiwalled carbon nanotube composites due to high β-phase formation in poly (vinylidene fluoride). The Journal of Physical Chemistry C, 2013. 117(22): p. 11791-11799.
18. Levi, N., et al., Properties of polyvinylidene difluoride− carbon nanotube blends. Nano Letters, 2004. 4(7): p. 1267-1271.
19. Lund, A., et al., Enhancement of β phase crystals formation with the use of nanofillers in PVDF films and fibres. Composites science and technology, 2011. 71(2): p. 222-229.
20. Nam, Y.W., et al. Morphology and Physical Properties of Binary Blend Based on PVDF and Multi‐Walled Carbon Nanotube. in Macromolecular symposia. 2007. Wiley Online Library.
21. Tang, C.-W., et al., The effects of nanofillers, stretching and recrystallization on microstructure, phase transformation and dielectric properties in PVDF nanocomposites. European Polymer Journal, 2012. 48(6): p. 1062-1072.
22. Guo, Z., et al., Melt spinning of PVDF fibers with enhanced β phase structure. Journal of Applied Polymer Science, 2013. 130(4): p. 2603-2609.
23. Liu, Z., et al. Mechanical properties of piezoelectric PVDF/MWCNT fibers prepared by flat/hollow cylindrical near-field electrospinning process. in Nano/Micro Engineered and Molecular Systems (NEMS), 2013 8th IEEE International Conference on. 2013. IEEE.
24. Shin, H., et al., Multiscale homogenization modeling for thermal transport properties of polymer nanocomposites with Kapitza thermal resistance. Polymer, 2013. 54(5): p. 1543-1554.
25. Odegard, G., T. Clancy, and T. Gates, Modeling of the mechanical properties of nanoparticle/polymer composites. Polymer, 2005. 46(2): p. 553-562.
26. Kutvonen, A., et al., Influence of nanoparticle size, loading, and shape on the mechanical properties of polymer nanocomposites. The Journal of chemical physics, 2012. 137(21): p. 214901.
27. Yang, S., J. Choi, and M. Cho, Elastic stiffness and filler size effect of covalently grafted nanosilica polyimide composites: Molecular dynamics study. ACS applied materials & interfaces, 2012. 4(9): p. 4792-4799.
28. Choi, J., et al., The influence of nanoparticle size on the mechanical properties of polymer nanocomposites and the associated interphase region: a multiscale approach. Composite Structures, 2015. 119: p. 365-376.
29. Gregorio, R., Determination of the α, β, and γ crystalline phases of poly (vinylidene fluoride) films prepared at different conditions. Journal of Applied Polymer Science, 2006. 100(4): p. 3272-3279.
30. Salimi, A. and A. Yousefi, Analysis method: FTIR studies of β-phase crystal formation in stretched PVDF films. Polymer Testing, 2003. 22(6): p. 699-704.
31. Mohammadi, B., A.A. Yousefi, and S.M. Bellah, Effect of tensile strain rate and elongation on crystalline structure and piezoelectric properties of PVDF thin films. Polymer testing, 2007. 26(1): p. 42-50.
32. El Mohajir, B.-E. and N. Heymans, Changes in structural and mechanical behaviour of PVDF with processing and thermomechanical treatments. 1. Change in structure. Polymer, 2001. 42(13): p. 5661-5667.
33. Davis, G., et al., Electric‐field‐induced phase changes in poly (vinylidene fluoride). Journal of Applied Physics, 1978. 49(10): p. 4998-5002.
34. Gregorio, R. and E. Ueno, Effect of crystalline phase, orientation and temperature on the dielectric properties of poly (vinylidene fluoride)(PVDF). Journal of Materials Science, 1999. 34(18): p. 4489-4500.
35. Wang, D., K. Li, and W. Teo, Preparation and characterization of polyvinylidene fluoride (PVDF) hollow fiber membranes. Journal of Membrane Science, 1999. 163(2): p. 211-220.
36. Wu, C.-W., et al., Touch panel. 2014, Google Patents.
37. Eisenmenger, W. and M. Haardt, Observation of charge compensated polarization zones in polyvinylindenfluoride (PVDF) films by piezoelectric acoustic step-wave response. Solid state communications, 1982. 41(12): p. 917-920.
38. Lanceros-Mendez, S., et al., Dielectric behavior in an oriented β-PVDF film and chain reorientation upon transverse mechanical deformation. Ferroelectrics, 2002. 273(1): p. 15-20.
39. Ueberschlag, P., PVDF piezoelectric polymer. Sensor Review, 2001. 21(2): p. 118-126.
40. Murayama, N., et al., The strong piezoelectricity in polyvinylidene fluroide (PVDF). Ultrasonics, 1976. 14(1): p. 15-24.
41. Kawai, H., The piezoelectricity of poly (vinylidene fluoride). Japanese Journal of Applied Physics, 1969. 8(7): p. 975.
42. Hidaka, T., et al., Ferroelectric PVDF cladding terahertz waveguide. Journal of lightwave technology, 2005. 23(8): p. 2469-2473.
43. Özgür, Ü., et al., A comprehensive review of ZnO materials and devices. Journal of applied physics, 2005. 98(4): p. 11.
44. Chen, X., et al., 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano letters, 2010. 10(6): p. 2133-2137.
45. Dubois, M.-A. and P. Muralt, Properties of aluminum nitride thin films for piezoelectric transducers and microwave filter applications. Applied Physics Letters, 1999. 74(20): p. 3032-3034.
46. Hossack, J.A., P. Mauchamp, and L. Ratsimandresy. A high bandwidth transducer optimized for harmonic imaging. in Ultrasonics Symposium, 2000 IEEE. 2000. IEEE.
47. Saito, Y., et al., High performance lead-free piezoelectric material. Nature, 2004. 432(7013): p. 84-87.
48. CHEN, H., J.-q. CHEN, and J.-b. HU, Research of underwater pressure receiver design by PVDF material. Journal of Naval University of Engineering, 2009. 2: p. 022.
49. Gu, H., Y. Zhao, and M.L. Wang, A wireless smart PVDF sensor for structural health monitoring. Structural Control and Health Monitoring, 2005. 12(3‐4): p. 329-343.
50. Chang, C., et al., Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano letters, 2010. 10(2): p. 726-731.
51. Xin, Y., et al., A Wearable Respiration and Pulse Monitoring System Based on PVDF Piezoelectric Film. Integrated Ferroelectrics, 2014. 158(1): p. 43-51.
52. Lovinger, A.J., Poly (vinylidene fluoride), in Developments in crystalline polymers—1. 1982, Springer. p. 195-273.
53. Iijima, S., Helical microtubules of graphitic carbon. nature, 1991. 354(6348): p. 56.
54. Hone, J., et al., Quantized phonon spectrum of single-wall carbon nanotubes. Science, 2000. 289(5485): p. 1730-1733.
55. Hutchison, D.N., et al., Carbon nanotubes as a framework for high-aspect-ratio MEMS fabrication. Journal of Microelectromechanical Systems, 2010. 19(1): p. 75-82.
56. Bacsa, R., et al., High specific surface area carbon nanotubes from catalytic chemical vapor deposition process. Chemical Physics Letters, 2000. 323(5): p. 566-571.
57. Demczyk, B., et al., Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Materials Science and Engineering: A, 2002. 334(1): p. 173-178.
58. Yun, Y., et al., High sensitivity carbon nanotube tower electrodes. Sensors and Actuators B: Chemical, 2006. 120(1): p. 298-304.
59. Ding, Y., et al., Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). International Journal of Heat and Mass Transfer, 2006. 49(1): p. 240-250.
60. El Achaby, M., et al., Piezoelectric β-polymorph formation and properties enhancement in graphene oxide–PVDF nanocomposite films. Applied Surface Science, 2012. 258(19): p. 7668-7677.
61. Kim, Y.-J., et al., Characteristics of electrospun PVDF/SiO 2 composite nanofiber membranes as polymer electrolyte. Materials Chemistry and Physics, 2011. 127(1): p. 137-142.
62. Wang, D., et al., Improved dielectric properties of nanocomposites based on poly (vinylidene fluoride) and poly (vinyl alcohol)-functionalized graphene. ACS applied materials & interfaces, 2012. 4(11): p. 6273-6279.
63. Manna, S., S.K. Batabyal, and A.K. Nandi, Preparation and characterization of silver− poly (vinylidene fluoride) nanocomposites: formation of piezoelectric polymorph of poly (vinylidene fluoride). The Journal of Physical Chemistry B, 2006. 110(25): p. 12318-12326.
64. Wang, W., et al., Gold‐Nanoparticle‐and Gold‐Nanoshell‐Induced Polymorphism in Poly (vinylidene fluoride). Macromolecular Materials and Engineering, 2011. 296(2): p. 178-184.
65. Yu, S., et al., Formation mechanism of β-phase in PVDF/CNT composite prepared by the sonication method. Macromolecules, 2009. 42(22): p. 8870-8874.
66. Baji, A., et al., Microstructure development in electrospun carbon nanotube reinforced polyvinylidene fluoride fibers and its influence on tensile strength and dielectric permittivity. Composites Science and Technology, 2013. 88: p. 1-8.
67. Bohlén, M. and K. Bolton, Molecular dynamics studies of the influence of single wall carbon nanotubes on the mechanical properties of Poly (vinylidene fluoride). Computational materials science, 2013. 68: p. 73-80.
68. Miao, J., et al., Molecular dynamics simulations of relaxation in stretched PVDF nanofibers. Polymer, 2015. 56: p. 482-489.
69. Jeong, J., et al., Mechanical properties of electrospun PVA/MWNTs composite nanofibers. Thin Solid Films, 2007. 515(12): p. 5136-5141.
70. Satyanarayana, K.C., et al., Analysis of the torsion angle distribution of poly (vinylidene fluoride) in the melt. Polymer, 2012. 53(5): p. 1109-1114.
71. Sun, F.-C., et al., Temperature dependent structural, elastic, and polar properties of ferroelectric polyvinylidene fluoride (PVDF) and trifluoroethylene (TrFE) copolymers. Journal of Materials Chemistry C, 2015. 3(32): p. 8389-8396.
72. Karasawa, N. and W.A. Goddard III, Dielectric properties of poly (vinylidene fluoride) from molecular dynamics simulations. Macromolecules, 1995. 28(20): p. 6765-6772.
73. Holman, R.W. and G.J. Kavarnos, A molecular dynamics investigation of the structural characteristics of amorphous and annealed poly (vinylidene fluoride) and vinylidene fluoride-trifluoroethylene copolymers. Polymer, 1996. 37(9): p. 1697-1701.
74. Irving, J. and J.G. Kirkwood, The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. The Journal of chemical physics, 1950. 18(6): p. 817-829.
75. Mayo, S.L., B.D. Olafson, and W.A. Goddard, DREIDING: a generic force field for molecular simulations. Journal of Physical chemistry, 1990. 94(26): p. 8897-8909.
76. MacKerell Jr, A.D., et al., All-atom empirical potential for molecular modeling and dynamics studies of proteins. The journal of physical chemistry B, 1998. 102(18): p. 3586-3616.
77. Hoover, W.G., Canonical dynamics: equilibrium phase-space distributions. Physical review A, 1985. 31(3): p. 1695.
78. Rapaport, D.C., et al., The art of molecular dynamics simulation. Computers in Physics, 1996. 10(5): p. 456-456.
79. Brooks, C.L., Computer simulation of liquids. Journal of Solution Chemistry, 1989. 18(1): p. 99-99.
80. Allen, M.P. and D.J. Tildesley, Computer simulation of liquids. 1989: Oxford university press.
81. Wand, C.R. and K. Bolton, Negative thermal expansion of poly (vinylidene fluoride) and polyethylene tie molecules: A molecular dynamics study. Journal of Polymer Science Part B: Polymer Physics, 2016. 54(21): p. 2223-2232.
82. Shi, Y. Particle swarm optimization: developments, applications and resources. in evolutionary computation, 2001. Proceedings of the 2001 Congress on. 2001. IEEE.
83. Stukowski, A., Computational analysis methods in atomistic modeling of crystals. Jom, 2014. 66(3): p. 399-407.
84. Shimizu, F., S. Ogata, and J. Li, Theory of shear banding in metallic glasses and molecular dynamics calculations. Materials transactions, 2007. 48(11): p. 2923-2927.
85. Chandra, N., S. Namilae, and C. Shet, Local elastic properties of carbon nanotubes in the presence of Stone-Wales defects. Physical Review B, 2004. 69(9): p. 094101.
86. Lin, J.-S., S.-P. Ju, and W.-J. Lee, Mechanical behavior of gold nanowires with a multishell helical structure. Physical Review B, 2005. 72(8): p. 085448.
87. Rouhi, S., Y. Alizadeh, and R. Ansari, On the elastic properties of single-walled carbon nanotubes/poly (ethylene oxide) nanocomposites using molecular dynamics simulations. Journal of molecular modeling, 2016. 22(1): p. 41.
88. Nasibulin, A.G., et al., Correlation between catalyst particle and single-walled carbon nanotube diameters. Carbon, 2005. 43(11): p. 2251-2257.
89. Tian, Y., et al., Analysis of the size distribution of single-walled carbon nanotubes using optical absorption spectroscopy. The Journal of Physical Chemistry Letters, 2010. 1(7): p. 1143-1148.
90. Sun, L., et al., Achieving very high fraction of β-crystal PVDF and PVDF/CNF composites and their effect on AC conductivity and microstructure through a stretching process. European Polymer Journal, 2010. 46(11): p. 2112-2119.
91. Nguyen, L., et al., Conductive Materials for Proton Exchange Membrane Fuel Cell Bipolar Plates Made from PVDF, PET and Co‐continuous PVDF/PET Filled with Carbon Additives. Fuel Cells, 2010. 10(6): p. 938-948.
92. Wang, Q., Z. Wang, and Z. Wu, Effects of solvent compositions on physicochemical properties and anti-fouling ability of PVDF microfiltration membranes for wastewater treatment. Desalination, 2012. 297: p. 79-86.
93. Sirohi, J. and I. Chopra, Fundamental understanding of piezoelectric strain sensors. Journal of intelligent material systems and structures, 2000. 11(4): p. 246-257.
94. Alian, A., S. Kundalwal, and S. Meguid, Multiscale modeling of carbon nanotube epoxy composites. Polymer, 2015. 70: p. 149-160.
95. Bao, S., G. Liang, and S.C. Tjong, Effect of mechanical stretching on electrical conductivity and positive temperature coefficient characteristics of poly (vinylidene fluoride)/carbon nanofiber composites prepared by non-solvent precipitation. Carbon, 2011. 49(5): p. 1758-1768.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code