Responsive image
博碩士論文 etd-0721117-145245 詳細資訊
Title page for etd-0721117-145245
論文名稱
Title
以隨機穿隧法搜尋具最佳序列之單股去氧核醣核酸分子於前列腺癌蛋白之辨識
A stochastic tunneling search method for single strand deoxyribonucleic acid with the optimal nucleobases sequence for recognizing the prostate cancer protein
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
73
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-28
繳交日期
Date of Submission
2017-08-21
關鍵字
Keywords
血管內皮細胞生長因子、Basin-Hopping method、分子動力學、癌症、AMBER
Molecular dynamics, Cancer, VEGF, Basin-Hopping method, AMBER
統計
Statistics
本論文已被瀏覽 5680 次,被下載 344
The thesis/dissertation has been browsed 5680 times, has been downloaded 344 times.
中文摘要
癌症是目前對人類健康最具威脅之疾病,自1982年起已高居國人死因首位。若是能夠在早期針對人體內各種癌細胞進行偵測,對於癌症的早期治療和維持人類生命的健康是極為重要的。由於目前臨床醫學之技術尚未有合適篩檢診斷平台,無法用來快速且精確的偵測人體體內較低濃度之癌症病原體,因此這個主題已成為全世界相關研究領域中的熱門題目。本研究藉由結合分子動力學(MD)與Basin-hopping結合隨機穿隧法(STUN-BH),以AMBER勢能發展一套預測最佳化單股DNA(ssDNA I)序列的流程。首先利用自由分子模擬軟體(LAMMPS Molecular Dynamics Simulator)搭配全域最小值搜尋方法(global minimum search method),找出能夠捕捉癌症病原體靶分子之ssDNA I序列與血管內皮細胞生長因子(VEGF)間交互作用之機制,並找出兩者間最穩定之結合構型與主要產生交互作用的鹼基片段,並進一步加入第二條與ssDNA I相同序列之ssDNA II,以探討額外的ssDNA序列對ssDNA-VEGF穩定結合構型的影響。整個模擬程序將有助於減少實驗端在找尋ssDNA所需消耗之時間、人力與物力。
Abstract
Cancer is one of the most threatening human diseases, which has occupied the first several leading death causes of the top ten in Taiwan since 1982. The early detection on the small amount of cancer molecules is very important for the early stage of cancer treatment and human health. However, the limitation of current clinical diagnostic screening technology has made cancer molecules still hard to be quick and accurate detected by this technology at very low concentration. Therefore, the development of novel probe for cancer molecule detection is the most demanding issue in the bio-technology field. In this study, the molecular dynamics (MD) simulation and the Stochastic tunneling with basin-hopping method (STUN-BH) with the Amber force field were used to clarify the detail interaction and binding configuration between single strand deoxyribonucleic acid (ssDNA) and vascular endothelial growth factor (VEGF). In addition, there is one more ssDNA has been imported into simulation system to investigate the adsorption mechanism of extra ssDNA after the first ssDNA has attached to VEGF. The whole simulation procedure will be developed by the free molecular package, large-scale atomic/molecular massively parallel simulator (LAMMPS) package, for reducing the ssDNA sequence search time in the related experiments.
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
誌謝 iii
中文摘要 iv
Abstract v
圖次 viii
表次 x
第一章 緒論 1
1.1 研究動機與目的 1
1.2核酸適體與前列腺癌靶分子 2
1.2.1 核酸適體 3
1.2.2 前列腺癌靶分子 4
1.3 前列腺癌標記物與核酸適體(ssDNA)之文獻回顧 5
1.3.1 實驗文獻 5
1.3.2 模擬相關文獻 6
1.4研究介紹 8
1.5本文架構 9
第二章 模擬方法與理論介紹 10
2.1 分子動力學 10
2.1.1 AMBER力場 12
2.1.2 Stochastic Tunneling with Basin-Hopping method (STUN-BH) 13
2.1.3 運動方程式 17
2.1.4 積分法則 18
2.1.5 系綜 19
2.1.6 諾斯-胡佛恆溫法 20
第三章 數值模擬方法 22
3.1 週期性邊界 22
3.2 鄰近原子表列法 23
3.2.1 截斷半徑法 (Cut-off method) 23
3.2.2 維理表列法 (Verlet list) 24
3.2.3 巢室表列法 (Cell Link) 25
3.2.4 維理表列法結合巢室表列法 26
3.3 分子動力學流程圖 27
3.3.1 NVT模擬流程圖 27
3.3.1 NPT模擬流程圖 28
3.4 統計之參數計算 29
3.4.1 Root-Mean-Square Deviation (RMSD) 29
3.4.2 Radius of Gyration 30
第四章 結果分析與討論 31
4.1血管內皮生長因子與單股去氧核醣核酸之物理模型 31
4.1.1 初始結構之物理模型 31
4.1.2 Basin hopping結合隨機穿隧法之穩定結構 33
4.1.3 分析各個VEGF殘基與ssDNA鹼基間的交互作用 36
4.1.4 模擬真空狀態下最穩定結構中的氫鍵分佈與RMSD分析 39
4.2分析VEGF-ssDNA I複合物在真空與水環境下的結構變化 41
4.2.1模擬水環境狀態下之RMSD分析 41
4.2.2模擬水環境狀態下之交互作用變化與最穩定結構之構型 43
4.3 探討加入第二條ssDNA II對原來ssDNA I的影響 47
4.3.1模擬水環境狀態下ssDNA I及ssDNA II之交互作用 47
4.3.2模擬水環境狀態下加入ssDNA II對ssDNA I之影響與最穩定結構之構型 49
4.4 探討加入第三條ssDNA III對原來ssDNA I與ssDNA II的影響 51
第五章 結論與未來展望 53
5.1 結論 53
5.2 未來展望 55
參考文獻 56
參考文獻 References
1. Torre, L.A., et al., Global cancer statistics, 2012. CA: a cancer journal for clinicians, 2015. 65(2): p. 87-108.
2. Pan, W., Health Promotion Administration. Ministry of Health and Welfare, Taiwan.
3. Stewart, B. and C.P. Wild, World cancer report 2014. Health, 2017.
4. Chiang, C.-J., et al., Quality assessment and improvement of nationwide cancer registration system in Taiwan: a review. Japanese journal of clinical oncology, 2015. 45(3): p. 291-296.
5. Pan, L.-H., et al., An electrochemical biosensor to simultaneously detect VEGF and PSA for early prostate cancer diagnosis based on graphene oxide/ssDNA/PLLA nanoparticles. Biosensors and Bioelectronics, 2017. 89: p. 598-605.
6. Ashrafuzzaman, M., et al., A computationally designed DNA aptamer template with specific binding to phosphatidylserine. nucleic acid therapeutics, 2013. 23(6): p. 418-426.
7. Zhu, H., S. Xiao, and H. Liang, Structural dynamics of human telomeric G-quadruplex loops studied by molecular dynamics simulations. PLoS One, 2013. 8(8): p. e71380.
8. Ashrafuzzaman, M., Aptamers as both drugs and drug-carriers. BioMed research international, 2014. 2014.
9. Rhinehardt, K.L., R.V. Mohan, and G. Srinivas, Computational Modeling of Peptide–Aptamer Binding. Computational Peptidology, 2015: p. 313-333.
10. Weng, M.H. and S.P. Ju, CO oxidation mechanism on tungsten nanoparticle. The Journal of Physical Chemistry C, 2012. 116(35): p. 18803-18815.
11. Lin, K.-H., et al., Structural and electronic properties of tungsten nanoclusters by DFT and basin-hopping calculations. RSC Advances, 2014. 4(46): p. 24286-24294.
12. Lin, K.-H., et al., Mechanical properties and thermal stability of ultrathin tungsten nanowires. RSC Advances, 2014. 4(14): p. 6985-6990.
13. Sun, S.-J., et al., Electronic and structural properties of ultrathin tungsten nanowires and nanotubes by density functional theory calculation. Journal of Applied Physics, 2014. 116(13): p. 133704.
14. Wang, Y.C., et al., Structure‐activity relationships of Leu‐enkephalin analog with (4‐carboxamido) phenylalanine substituted for tyrosine: A molecular dynamics study. Biopolymers, 2007. 86(3): p. 231-239.
15. Wu, Y.-C., J.-S. Lin, and C.-C. Hwang, Structure− Activity Relationships of αS1-Casomorphin Using AM1 Calculations and Molecular Dynamics Simulations. The Journal of Physical Chemistry B, 2007. 111(25): p. 7377-7383.
16. Wang, C.-l., et al., Structure–activity study of endomorphin-2 analogs with C-terminal modifications by NMR spectroscopy and molecular modeling. Bioorganic & medicinal chemistry, 2008. 16(12): p. 6415-6422.
17. Wu, Y.-C., et al., Four-component pharmacophore model for endomorphins toward μ opioid receptor subtypes. Journal of molecular modeling, 2012. 18(2): p. 825-834.
18. Plimpton, S., P. Crozier, and A. Thompson, LAMMPS-large-scale atomic/molecular massively parallel simulator. Sandia National Laboratories, 2007. 18.
19. Ellington, A.D. and J.W. Szostak, In vitro selection of RNA molecules that bind specific ligands. nature, 1990. 346(6287): p. 818.
20. Tuerk, C. and L. Gold, Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990. 249(4968): p. 505-510.
21. Cho, E.J., J.-W. Lee, and A.D. Ellington, Applications of aptamers as sensors. Annual Review of Analytical Chemistry, 2009. 2: p. 241-264.
22. Keefe, A.D., S. Pai, and A. Ellington, Aptamers as therapeutics. Nature reviews Drug discovery, 2010. 9(7): p. 537-550.
23. Bouchard, P., R. Hutabarat, and K. Thompson, Discovery and development of therapeutic aptamers. Annual review of pharmacology and toxicology, 2010. 50: p. 237-257.
24. Hong, H., et al., Molecular imaging with nucleic acid aptamers. Current medicinal chemistry, 2011. 18(27): p. 4195-4205.
25. Sun, H., et al., Oligonucleotide aptamers: new tools for targeted cancer therapy. Molecular Therapy-Nucleic Acids, 2014. 3: p. e182.
26. Leung, D.W., et al., Vascular endothelial growth factor is a secreted angiogenic mitogen. Science, 1989. 246(4935): p. 1306.
27. Catalona, W.J., et al., Comparison of digital rectal examination and serum prostate specific antigen in the early detection of prostate cancer: results of a multicenter clinical trial of 6,630 men. The Journal of urology, 1994. 151(5): p. 1283-1290.
28. Chang, S.S., et al., Five different anti-prostate-specific membrane antigen (PSMA) antibodies confirm PSMA expression in tumor-associated neovasculature. Cancer research, 1999. 59(13): p. 3192-3198.
29. Ferrara, N., H.-P. Gerber, and J. LeCouter, The biology of VEGF and its receptors. Nature medicine, 2003. 9(6): p. 669-676.
30. Takano, S., Glioblastoma angiogenesis: VEGF resistance solutions and new strategies based on molecular mechanisms of tumor vessel formation. Brain tumor pathology, 2012. 29(2): p. 73-86.
31. Stone, J., et al., Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. Journal of Neuroscience, 1995. 15(7): p. 4738-4747.
32. Carmeliet, P., VEGF as a key mediator of angiogenesis in cancer. Oncology, 2005. 69(Suppl. 3): p. 4-10.
33. Ferrara, N., VEGF and the quest for tumour angiogenesis factors. Nature Reviews Cancer, 2002. 2(10): p. 795-803.
34. Kim, K.J., et al., Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature, 1993. 362(6423): p. 841.
35. Ko, J., et al., SERS-based immunoassay of tumor marker VEGF using DNA aptamers and silica-encapsulated hollow gold nanospheres. Physical Chemistry Chemical Physics, 2013. 15(15): p. 5379-5385.
36. Snodin, B.E., et al., Direct simulation of the self-assembly of a small DNA origami. ACS nano, 2016. 10(2): p. 1724-1737.
37. Cheng, C.-L. and G.-J. Zhao, Steered molecular dynamics simulation study on dynamic self-assembly of single-stranded DNA with double-walled carbon nanotube and graphene. Nanoscale, 2012. 4(7): p. 2301-2305.
38. Mishra, G. and Y. Levy, Molecular determinants of the interactions between proteins and ssDNA. Proceedings of the National Academy of Sciences, 2015. 112(16): p. 5033-5038.
39. Shvets, A., M. Kochugaeva, and A.B. Kolomeisky, Role of static and dynamic obstacles in the protein search for targets on DNA. The Journal of Physical Chemistry B, 2015. 120(26): p. 5802-5809.
40. Giannakakou, P., et al., A common pharmacophore for epothilone and taxanes: molecular basis for drug resistance conferred by tubulin mutations in human cancer cells. Proceedings of the National Academy of Sciences, 2000. 97(6): p. 2904-2909.
41. Song, W. and J.-T. Guo, Investigation of arc repressor DNA-binding specificity by comparative molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 2015. 33(10): p. 2083-2093.
42. Hilder, T.A. and J.M. Hodgkiss, Molecular Mechanism of Binding between 17β-Estradiol and DNA. Computational and structural biotechnology journal, 2017. 15: p. 91-97.
43. Shankaraiah, N., et al., DNA-binding affinity and anticancer activity of β-carboline–chalcone conjugates as potential DNA intercalators: molecular modelling and synthesis. Bioorganic chemistry, 2015. 59: p. 130-139.
44. Xiang, D., et al., Nucleic acid aptamer-guided cancer therapeutics and diagnostics: the next generation of cancer medicine. Theranostics, 2015. 5(1): p. 23.
45. Weiner, S.J., et al., A new force field for molecular mechanical simulation of nucleic acids and proteins. Journal of the American Chemical Society, 1984. 106(3): p. 765-784.
46. Lindorff‐Larsen, K., et al., Improved side‐chain torsion potentials for the Amber ff99SB protein force field. Proteins: Structure, Function, and Bioinformatics, 2010. 78(8): p. 1950-1958.
47. Karplus, M. and G.A. Petsko, Molecular dynamics simulations in biology. Nature, 1990. 347(6294): p. 631-639.
48. MacKerell, A.D. and L. Nilsson, Molecular dynamics simulations of nucleic acid–protein complexes. Current opinion in structural biology, 2008. 18(2): p. 194-199.
49. Šponer, J.í., et al., Molecular dynamics simulations of nucleic acids. From tetranucleotides to the ribosome. The journal of physical chemistry letters, 2014. 5(10): p. 1771-1782.
50. Cheatham, T.E., Simulation and modeling of nucleic acid structure, dynamics and interactions. Current opinion in structural biology, 2004. 14(3): p. 360-367.
51. Laughton, C.A. and S.A. Harris, The atomistic simulation of DNA. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2011. 1(4): p. 590-600.
52. Nawrocki, G., et al., Peptide recognition capabilities of cellulose in molecular dynamics simulations. The Journal of Physical Chemistry C, 2015. 119(43): p. 24404-24416.
53. Maingi, V., et al., Gating-like motions and wall porosity in a DNA nanopore scaffold revealed by molecular simulations. ACS nano, 2015. 9(11): p. 11209-11217.
54. An, Y., J.W. Bloom, and S.E. Wheeler, Quantifying the π-stacking interactions in nitroarene binding sites of proteins. The Journal of Physical Chemistry B, 2015. 119(45): p. 14441-14450.
55. Li, J., et al., Monte Carlo simulation of uniaxial tension of an amorphous polyethylene-like polymer glass. Macromolecules, 2006. 39(22): p. 7774-7782.
56. Chui, C. and M.C. Boyce, Monte Carlo modeling of amorphous polymer deformation: Evolution of stress with strain. Macromolecules, 1999. 32(11): p. 3795-3808.
57. Møller, M.F., A scaled conjugate gradient algorithm for fast supervised learning. Neural networks, 1993. 6(4): p. 525-533.
58. Barhen, J., V. Protopopescu, and D. Reister, TRUST: A deterministic algorithm for global optimization. Science, 1997. 276(5315): p. 1094-1097.
59. Wenzel, W. and K. Hamacher, Stochastic tunneling approach for global minimization of complex potential energy landscapes. Physical Review Letters, 1999. 82(15): p. 3003.
60. Hamacher, K., Adaptation in stochastic tunneling global optimization of complex potential energy landscapes. EPL (Europhysics Letters), 2006. 74(6): p. 944.
61. MacKerell Jr, A.D., et al., All-atom empirical potential for molecular modeling and dynamics studies of proteins. The journal of physical chemistry B, 1998. 102(18): p. 3586-3616.
62. Nosé, S., A unified formulation of the constant temperature molecular dynamics methods. The Journal of chemical physics, 1984. 81(1): p. 511-519.
63. Hoover, W.G., Canonical dynamics: equilibrium phase-space distributions. Physical review A, 1985. 31(3): p. 1695.
64. Rapaport, D.C., et al., The art of molecular dynamics simulation. Computers in Physics, 1996. 10(5): p. 456-456.
65. Allen, M.P. and D.J. Tildesley, Computer simulation of liquids. 1989: Oxford university press.
66. Frenkel, D. and B. Smit, Understanding molecular simulation: from algorithms to applications. Vol. 1. 2001: Academic press.
67. Carugo, O. and S. Pongor, A normalized root‐mean‐spuare distance for comparing protein three‐dimensional structures. Protein science, 2001. 10(7): p. 1470-1473.
68. Kaburagi, M., et al., Molecular dynamics simulation of telomeric single-stranded DNA and POT1. Polymer Journal, 2016. 48(2): p. 189-195.
69. Kuszewski, J., A.M. Gronenborn, and G.M. Clore, Improving the packing and accuracy of NMR structures with a pseudopotential for the radius of gyration. Journal of the American Chemical Society, 1999. 121(10): p. 2337-2338.
70. Bernstein, F.C., et al., The protein data bank. The FEBS Journal, 1977. 80(2): p. 319-324.
71. Berman, H.M., et al., The protein data bank. Acta Crystallographica Section D: Biological Crystallography, 2002. 58(6): p. 899-907.
72. Ponder, J.W., TINKER: Software tools for molecular design. Washington University School of Medicine, Saint Louis, MO, 2004. 3.
73. Torabi, R., et al., An investigation on the interaction modes of a single-strand DNA aptamer and RBP4 protein: a molecular dynamic simulations approach. Organic & biomolecular chemistry, 2016. 14(34): p. 8141-8153.
74. Mark, P. and L. Nilsson, Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. The Journal of Physical Chemistry A, 2001. 105(43): p. 9954-9960.
75. Price, D.J. and C.L. Brooks III, A modified TIP3P water potential for simulation with Ewald summation. The Journal of chemical physics, 2004. 121(20): p. 10096-10103.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code