Responsive image
博碩士論文 etd-0721118-100003 詳細資訊
Title page for etd-0721118-100003
論文名稱
Title
雷射與電子束積層製造鈦合金經電解拋光後於骨科植入之性能評估
Performance evaluation for orthopedic application of electropolished titanium alloy fabricated by laser and electron beam additive manufactures
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
145
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-22
繳交日期
Date of Submission
2018-08-21
關鍵字
Keywords
模擬人體體液、抗腐蝕性質、Ti-6Al-4V、表面粗糙度、積層製造
SBF, corrosion resistance, surface roughness, additive manufacture, Ti-6Al-4V
統計
Statistics
本論文已被瀏覽 5782 次,被下載 40
The thesis/dissertation has been browsed 5782 times, has been downloaded 40 times.
中文摘要
根據以往的研究成果,我們可以發現Ti-6Al-4V合金相較於一般的純鈦金屬有著更為優良的生物相容性、抗腐蝕能力和更為匹配的機械性質。積層製造是時下蓬勃發展的技術,在製程上有著簡化製程步驟和客製化複雜結構的兩大優勢,使其在生醫領域上有著很大的潛力。然而,積層製造的金屬成品都有著表面粗糙度過大的問題,這不但導致成品外觀與所求有差別,也直接影響植入物的抗腐蝕反應,進而增加患者植入後的風險,而積層製造Ti-6Al-4V經表面處理降低表面粗糙度後的抗腐蝕相關研究仍屬少見。

本實驗透過兩種粉床熔融積層製造技術: EBM及SLM製造Ti-6Al-4V合金。通過XRD和EDS分析,可以確定均為α相的Ti-6Al-4V。配合電解拋光處理後,利用3D alpha-step測得EBM試片的表面粗糙度約為25 μm、20 μm、15 μm、10 μm和5 μm;SLM約為15 μm、10 μm和5 μm。透過電子顯微鏡的觀察,初始EBM(25 μm)和SLM(15μm)的表面沾粘大量粉末,這被認為是影響試片表面粗糙度的主因之一;經過電解處理後的EBM和SLM試片隨表面隨粗糙度的下降,其表面形貌逐漸形成梯田和波浪型外觀。

根據試片於模擬人體體液中的電化學分析結果,電解拋光後的EBM和SLM試片展現逐步降低的腐蝕電位和腐蝕電流密度。說明了在高溫的積層製造後,試片表面形成了一層更為緻密的鈍化保護層(氧化層),腐蝕反應需要得到更多的能量方可驅動;然而當外層氧化膜開始解離後,未經過處理的試片因為表面粗糙度過大和形貌上的缺陷,提供了更多有利於腐蝕的缺陷,使得腐蝕反應更為快速以及大面積地發生於試片上,大大地提高了腐蝕速率。另外,SLM試片的初始粗糙度遠小於EBM,使得SLM展現出更加的抗腐蝕性質(較大的Ecorr和較小Icorr)。因此,比較沒有經過電解拋光處理的試片而言,SLM 試片展現更好的抗腐蝕能力。比較同於15 μm粗糙度下EBM和SLM試片,發現EBM的Ecorr和Icorr均小於SLM。Ecorr的差異來自於電解前後表面鈍化層的不同,在15 μm粗糙度下的EBM試片的表面鈍化層明顯不如SLM的;然而,因為電拋後的微觀表面形貌得到大大的改善,在鈍化層破裂後,EBM試片的Icorr或腐蝕的速率也大大下降。在10 μm粗糙度的情況下,兩者的鈍化層成分均來自於電解液的反應,然而EBM試片展現了更佳的抗腐蝕能力,造成Ecorr差異的原因為EBM試片經過更長的電拋時間方可達到10 μm粗糙度,相對應的也將形成更為完整緻密的鈍化層;而透過電子顯微鏡的觀察,也可以發現此粗糙度下的EBM有著更為優化的微觀表面形貌,促使其具有較慢的腐蝕速率。此外,5 μm粗糙度的EBM試片的微觀形貌有著大量的點蝕痕跡,這說明了試片在電拋條件下發生了過腐蝕反應。在此前提下的EBM試片無法與電拋後無明顯點蝕的SLM比較,因此不適合加入電化學測試,在植入應用上也受到限制。同時,EBM和SLM在所使用的電拋參數中無法達到更為平滑的微觀形貌(鏡面),因此無法直接斷定何種積層製程在植入應用上更具優勢。
Abstract
According to the previous results, Ti-6Al-4V possess better biocompatibility, bio-corrosion resistance and appropriate mechanical properties as compare with other Ti-based alloys. Additive manufacture has become a flourishingly and potentially technique in fabricating biomaterials due to some benefits. For an example, the elastic modulus of material which able to control by adjusting porosity or pore size. Comparing among traditional processing and additive manufacturing, the former shows complexity and higher cost in producing porous foam; the latter own benefits of lower time cost, budget, and well-designed products with input CAD data. However, inferior surface roughness of additive manufactured product not only influence the outward appearance but also reduce the corrosion resistance.

Firstly, Ti-6Al-4V alloys are successfully produced by electron beam melting (EBM) and selecting laser melting (SLM). Based on XRD and EDS results, both Ti-6Al-4V alloys are confirmed as α-phase Ti-6Al-4V. By applying electropolishing polishing treatment, surface roughness of EBM sample is confirmed by 3D alpha-step as nearly 25 μm, 20 μm, 15 μm, 10 μm and 5 μm, while SLM sample as 15 μm, 10 μm and 5 μm. Through SEM observations, the as-fabricated EBM and SLM samples show surface morphology full of attached powder. However, the surface gradually transformed to terrace-like, field-like and wave-like morphology as results accompanied with decreasing of surface roughness after EP.

Electrochemical analyses of corrosion behaviour in simulating body fluid (SBF) is conducted. As compare among samples fabricated by similar AM method, the as-fabricated samples show highest Ecorr and Icorr, which indicate that a higher energy is needed to activate corrosion reaction. However, due to inferior surface properties of as-fabricated sample, more surficial defects display and a larger area which is easier to induce corrosion reaction, therefore a higher corrosion rate performed once the outer passive film is broken. Besides, the as-fabricated SLM sample shows better bio-corrosion resistance as compare with EBM, this may be contributed by a lower surface roughness of SLM sample. For samples with 15 μm surface roughness, EBM possess smaller Ecorr and Icorr. Which indicate that the passive layer formed as reacted with electrolyte solution is not good as the passive layer initially formed, and the relatively worse morphology of SLM sample is benefit in promote corrosion reaction once the protective layer is broken. However, for samples with 10 μm surface roughness, EBM sample show better bio-corrosion behaviour as higher Ecorr and smaller Icorr. This is due to formation of denser and more completely passivated oxide layer after a prolonged EP duration, and the surface with less defects is benefit in lower the corrosion rate. Worth noting that, EBM sample with 5 μm roughness shows large area of pitting traces, this may due to an over-polishing during EP. Because of this situation, the mentioned EBM sample is not suitable to compared under electrochemical analysis, and reasonably be restrain in bio-implantation.
目次 Table of Contents
論文審定書 i
致謝 ii
中文摘要 v
Abstract vii
Content ix
List of Figures xii
List of Tables xvii
Chapter 1 Introduction 1
1.1 Evolution of additive manufacturing 1
1.2 Bio-implant materials 2
1.3 Motivation 3
Chapter 2 Background and Literature Review 6
2.1 Introduction of Ti and Ti-based alloy 6
2.1.1 Commercial pure titanium (CP-Ti) 6
2.1.2 Alpha stabilizers 7
2.1.3 Neutral elements 8
2.1.4 Beta stabilizers 8
2.1.5 -titanium alloys 10
2.2 Classification of AM 12
2.2.1 Material extrusion 13
2.2.2 Powder bed fusion 13
2.2.3 Vat photo-polymerization 14
2.2.4 Material jetting 14
2.2.5 Binder jetting 15
2.2.6 Sheet lamination 15
2.2.7 Directed energy deposition 16
2.3 Distinctive parameters of AM 16
2.4 Electropolishing 17
2.5 Corrosion mechanism 19
2.6 Classification of corrosion 20
2.7 Bio-implant materials 23
2.8 Electrochemical testing 25
2.8.1 Polarization curve (Tafel) 25
Chapter 3 Experimental procedures 29
3.1 Sample preparation 29
3.1.1 Electron beam melting (EBM) 29
3.1.2 Selecting laser melting (SLM) 30
3.1.3 Electropolishing 31
3.2 Property measurements and analysis 31
3.2.1 X-ray diffraction (XRD) 31
3.2.2 Scanning electron microscopy (SEM) 32
3.2.3 3D alpha-step profilometer 32
3.2.4 Electrochemical properties analysis 33
Chapter 4 Results and discussions 34
4-1 Additive manufactured Ti-6Al-4V 34
4-2 XRD results 35
4-3 Electropolished samples 36
4-4 SEM observations of plasma-atomized powders 38
4-5 Surface morphology 39
4-6 Electrochemical analyses 40
4-6-1 EBM Ti-6Al-4V 41
4-6-2 SLM Ti-6Al-4V 43
4-6-3 Comparison of SLM and EBM 44
Chapter 5 Conclusions 46
References 48
Figures 54
Tables 114
參考文獻 References
[1] J. L. Murray, ASM International (1987) 354.
[2] http://additivemanufacturing.com/basics/.
[3] T. Wohlers, T. Gornet, Wohlers Report: Additive Manufacturing and 3D Printing State of the Industry Annual Worldwide Progress Report (2011).
[4] S. Ford, M. Despeisse, Journal of Cleaner Production: C 137 (2016) 1573-1587.
[5] M. Calin, A. Gebert, A. C. Ghinea, P. F. Gostin, S. Abdi, C. Mickel, J. Eckert, Materials Science and Engineering: C 33(2) (2013) 875-883.
[6] T. M. Sridhar, U. Kamachi Mudali, M. Subbaiyan, Corrosion Science 45(2) (2003) 237-252.
[7] L. Murr, S. Gaytan, F. Medina, H. Lopez, E. Martinez, B. Machado, D. Hernandez, L. Martinez, M. Lopez, R. Wicker, Physical and Engineering Sciences 368(1917) (2010) 1999-2032.
[8] M. J. Donachie, Titanium: A Technical Guide, ASM international (2000).
[9] V. K, R. N, S. D, B. A.C, M. V, B. N.K, S. S, Applied Surface Science 258(18) (2012) 6853-6863.
[10] H. M. Kim, T. Kokubo, S. Fujibayashi, S. Nishiguchi, T. Nakamura, Journal of Biomedical Materials Research Part A 52(3) (2000) 553-557.
[11] A. M. Kumar, P. Sudhagar, S. Ramakrishna, Y. S. Kang, H. Kim, Z. M. Gasem, N. Rajendran, Applied Surface Science: C 307 (2014) 52-61.
[12] M. Niinomi, Materials Science and Engineering: A 243(1) (1998) 231-236.
[13] C. Zheng, F. Nie, Y. Zheng, Y. Cheng, S. Wei, R. Valiev, Applied Surface Science 257(13) (2011) 5634-5640.
[14] S.A. Brown, J.E. Lemons, ASTM Pennsylvania (1996).
[15] K. Wang, Materials Science and Engineering: A 213(1) (1996) 134-137.
[16] K. Wang, L. Gustavson, J. Dumbleton, Beta Titanium Alloys in the 1990's (1993) 49-60.
[17] L. Gerd, J. Williams, Titanium, Springer (2007).
[18] https://www.azom.com/article.aspx?ArticleID=915
[19] S. Ankem, C.A. Greene, Materials Science and Engineering: A 263(2) (1999) 127-131.
[20] D. Eylon, R.R. Boyer, D.A. Koss, Minerals, Metals and Materials Society (1993).
[21] M. K. McQuillan, Metallurgical Reviews 8(1) (1963) 41-104.
[22] N. Sakaguchi, M. Niinomi, T. Akahori, J. Takeda, H. Toda, Materials Science and Engineering: C 25(3) (2005) 370-376.
[23] S. Nag, R. Banerjee, Fundamentals of Medical Implant Materials, ASM handbook 23 (2012) 6-17.
[24] M. Niinomi, M. Nakai, International Journal of Biomaterials 2011 (2011) 10 pages.
[25] 魏廷宇, 鈦-15 鉬-5 鋯-3 鋁合金顯微結構分析, 屏東科技大學機械工程系所學位論文 (2012) 1-56.
[26] J. Y. Rho, R. B. Ashman, C. H. Turner, Journal of Biomechanics 26(2) (1993) 111-119.
[27] J. Y. Rho, M. E. Roy, T. Y. Tsui, G. M. Pharr, Journal of Biomedical Materials Research: A 45(1) (1999) 48-54.
[28] J. Y. Rho, T. Y. Tsui, G.M. Pharr, Biomaterials 18(20) (1997) 1325-1330.
[29] C. A. Engh, J. Bobyn, A. H. Glassman, Bone & Joint Journal 69(1) (1987) 45-55.
[30] R. Huiskes, H. Weinans, B. Van Rietbergen, Clinical Orthopaedics and Related Research (1992) 124-134.
[31] M. Kanayama, B. W. Cunningham, C. J. Haggerty, K. Abumi, K. Kaneda, P. C. McAfee, Journal of Neurosurgery: Spine 93(2) (2000) 259-265.
[32] D. Mareci, R. Chelariu, D. M. Gordin, G. Ungureanu, T. Gloriant, Acta Biomaterialia 5(9) (2009) 3625-3639.
[33] M. T. Jovanović, S. Tadić, S. Zec, Z. Mišković, I. Bobić, Materials & Design 27(3) (2006) 192-199.
[34] J. K. S. Nagel, F. W. Liou, Journal of Manufacturing Science and Engineering 132(6) (2010) 061006-1-061006-14.
[35] J. P. Kruth, M. C. Leu, T. Nakagawa, CIRP Annals 47(2) (1998) 525-540.
[36] M. Burns, Automated Fabrication: Improving Productivity in Manufacturing, Prentice-Hall (1993).
[37] C. K. Chua, K. F. Leong, C. S. Lim, World Scientific Publishing Co Inc (2003).
[38] D. T. Pham, R. S. Gault, International Journal of Machine Tools and Manufacture 38(10) (1998) 1257-1287.
[39] A. Standard, F2792. 2012. Standard Terminology for Additive Manufacturing Technologies, ASTM F2792-10e1 (2012).
[40] S. Au, P. K. Wright, ASME, 66 (1993) 73-82.
[41] J. Hänninen, Metal Powder Report 56(9) (2001) 2426-29.
[42] J. P. Kruth, P. Mercelis, J. Van Vaerenbergh, L. Froyen, M. Rombouts, Rapid Prototyping Journal 11(1) (2005) 26-36.
[43] L. E. Murr, S. M. Gaytan, D. A. Ramirez, E. Martinez, J. Hernandez, K. N. Amato, P. W. Shindo, F. R. Medina, R. B. Wicker, Journal of Materials Science & Technology 28(1) (2012) 1-14.
[44] M. Shellabear, O. Nyrhilä, Laser Assisted Netshape Engineering 4, Proceedings of the 4th LANE (2004) 21-24.
[45] W. Bian, D. Li, Q. Lian, X. Li, W. Zhang, K. Wang, Z. Jin, Rapid Prototyping Journal 18(1) (2012) 68-80.
[46] K. Chopra, P. Mummery, B. Derby, J. Gough, Biofabrication 4(4) (2012) 045002.
[47] M.L. Griffith, J.W. Halloran, The 1994 International Mechanical Engineering Congress and Exposition (1994) 529-534.
[48] P. Calvert, Chemistry of Materials 13(10) (2001) 3299-3305.
[49] H. P. Le, Journal of Imaging Science and Technology 42(1) (1998) 49-62.
[50] P. Blazdell, J. Evans, M. Edirisinghe, P. Shaw, M. Binstead, Journal of Materials Science letters 14(22) (1995) 1562-1565.
[51] A. M. Elliott, O. S. Ivanova, C. B. Williams, T. A. Campbell, Advanced Engineering Materials 15(10) (2013) 903-907.
[52] S. H. Ko, J. Chung, N. Hotz, K. H. Nam, C. P. Grigoropoulos, Journal of Micromechanics and Microengineering 20(12) (2010) 125010.
[53] W. Gao, Y. Zhang, D. Ramanujan, K. Ramani, Y. Chen, C. B. Williams, C. C. L. Wang, Y. C. Shin, S. Zhang, P. D. Zavattieri, Computer-Aided Design: C 69 (2015) 65-89.
[54] B. Mueller, D. Kochan, Computers in Industry 39(1) (1999) 47-53.
[55] D. F. Walczyk, S. Yoo, Journal of Manufacturing Processes 11(1) (2009) 8-18.
[56] G. J. Ram, Y. Yang, B. Stucker, Journal of Manufacturing Systems 25(3) (2006) 221-238.
[57] J. M. Wilson, C. Piya, Y. C. Shin, F. Zhao, K. Ramani, Journal of Cleaner Production 80 (2014) 170-178.
[58] J. Tuominen, M. Honkanen, J. Hovikorpi, J. Vihinen, P. Vuoristo, T. Maentylae, International Society for Optics and Photonics (2003) 59-64.
[59] J. M. Wilson, N. Jones, L. Jin, Y. C. Shin, Journal of Biomedical Materials Research Part B: Applied Biomaterials 101(7) (2013) 1124-1132.
[60] X. Ye, Y. C. Shin, Surface and Coatings Technology 239 (2014) 34-40.
[61] J. P. Kruth, G. Levy, F. Klocke, T. Childs, CIRP Annals-Manufacturing Technology 56(2) (2007) 730-759.
[62] H. K. Rafi, N. V. Karthik, H. Gong, T. L. Starr, B. E. Stucker, Journal of Materials Engineering and Performance 22(12) (2013) 3872-3883.
[63] M. F. Zäh, S. Lutzmann, Production Engineering 4(1) (2010) 15-23.
[64] D. Landolt, Electrochimica Acta 32(1) (1987) 1-11.
[65] C. Wagner, Journal of The Electrochemical Society 101(5) (1954) 225-228.
[66] M. Matlosz, Electrochimica Acta 40(4) (1995) 393-401.
[67] T. P. Hoar, D. C. Mears, G. P. Rothwell, Corrosion Science 5(4) (1965) 279-289.
[68] M. Novak, A. Reddy, H. Wroblowa, Journal of The Electrochemical Society 117(6) (1970) 733-737.
[69] J. Mathieu, H. Mathieu, D. Landolt, Journal of the Electrochemical Society 125(7) (1978) 1039-1043.
[70] N. Perez, Electrochemistry and Corrosion Science, Springer (2004).
[71] S. L. Pohlman, R. Baboian, S. Dexter, J. Koger, C. Bagnall, W. Brehm, I. Wright, ASM Handbook 13 (1987) 80-103.
[72] S. Dexter, C. Hahin, R. Kain, A. Asphahani, W. Silence, ASM Handbook 13 (1987) 104-122.
[73] 柯賢文, 腐蝕及其防制, 全華科技圖書股份有限公司(2006).
[74] R. Parkins, F. Mazza, J. Royuelat, J. Scully, British Corrosion Journal 7(4) (1972) 154-167.
[75] E. Ingham, J. Fisher, Biomaterials 26(11) (2005) 1271-1286.
[76] D. F. Williams, Biomaterials 29(20) (2008) 2941-2953.
[77] U. Kamachimudali, T. Sridhar, B. Raj, Sadhana 28(3) (2003) 601-637.
[78] B. Zberg, P. J. Uggowitzer, J. F. Löffler, Nature Materials 8(11) (2009) 887.
[79] S. R. Paital, N. B. Dahotre, Materials Science and Engineering 66(1) (2009) 1-70.
[80] S. Guo, Q. Meng, X. Cheng, X. Zhao, Materials Letters 133 (2014) 236-239.
[81] E. Bertrand, T. Gloriant, D. M. Gordin, E. Vasilescu, P. Drob, C. Vasilescu, S.I. Drob, Journal of the Mechanical Behavior of Biomedical Materials 3(8) (2010) 559-564.
[82] D. McLachlan, C. Bergeron, J. Smith, D. Boomer, S. Rifat, Neurology 48(4) (1997) 1141-1142.
[83] D. Granchi, E. Cenni, G. Ciapetti, L. Savarino, S. Stea, S. Gamberini, A. Gori, Journal of Materials Science: materials in medicine 9(1) (1998) 31-37.
[84] H. J. Flitt, D. P. Schweinsberg, Corrosion Science 47(9) (2005) 2125-2156.
[85] E. Liening, Process Industries Corrosion: The Theory and Practice (1986) 85-122.
[86] 熊楚強, 王月, 電化學, 文京圖書: 台北市 (2006).
[87] Y. M. Tan, R.W. Revie, John Wiley & Sons (2012).
[88] L. Murr, S. Gaytan, F. Medina, E. Martinez, D. Hernandez, L. Martinez, M. Lopez, R. Wicker, S. Collins, 20th Solid Freeform Fabrication Symposium (2009) 3-5.
[89] https://en.wikipedia.org/wiki/Electropolishing.
[90] A. Safdar, L. Y. Wei, A. Snis, Z. Lai, Mater. Charact. 65 (2018) 8-15.
[91] E. K. Molchanova, Phase diagrams of titanium alloys, Israel Program for Scientific Translations 1965.
[92] N. Dai, L. C. Zhang, J. X. Zhang, X. Zhang, Q. Z. Ni, Y. Chen, M. L. Wu, C. Yang, Corros. Sci, 111 (2016) 484-489.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code