Responsive image
博碩士論文 etd-0721118-103634 詳細資訊
Title page for etd-0721118-103634
論文名稱
Title
利用多頻聲學儀器探討懸浮沉積物濃度及特性:以九龍江口與珠江口為例
Using a multi-frequency acoustic instrument to investigate suspended sediment: case studies at the mouths of Jiulong River and Pearl River
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
88
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-08-03
繳交日期
Date of Submission
2018-08-24
關鍵字
Keywords
經驗正交函數、珠江口、光學背向散射、九龍江口、懸浮沉積物、多頻聲學、沖淡水
optical backscatterance, river plume, EOF, Pearl River mouth, Jiulong River mouth, multi-frequency acoustics, suspended sediment
統計
Statistics
本論文已被瀏覽 5674 次,被下載 193
The thesis/dissertation has been browsed 5674 times, has been downloaded 193 times.
中文摘要
過去的研究中測量懸浮沉積物濃度以光學儀器及現場採集水樣為主。而聲學儀器較不易受濁度、生物附著和黏滯性影響,其空間和時間上的解析度較採集水樣高且數據較光學儀器可靠。儀器原理為,當聲波接觸到懸浮沉積物時,產生背散射訊號,將訊號轉換為回波強度值後,利用前人的聲學經驗式進行反算,隨著環境因子改變校正公式內的參數,並且修正不同頻率的反算係數,推算出懸浮顆粒的濃度及粒徑。本研究探討使用四種頻率(0.5MHz、1MHz、2MHz、4MHz)的聲學懸浮顆粒觀測儀(AQUAscat-1000)進行觀測,用以探討懸浮沉積物濃度和粒徑在不同聲波頻率下訊號的差異變化以及和光學儀器及現場水樣過濾的沉積物濃度做對比。
研究地點九龍江口以及珠江口,實驗內容為佈放一錨碇串列,用以連續觀測潮汐影響下之複雜河口沖淡水特性,測量水團的溫度、鹽度、葉綠素及濁度,並收集聲學、光學儀器數據以及現場水樣,將水樣進行懸浮顆粒濃度分析後,計算懸浮沉積物不同粒徑群組(10-63 μm, 63-153 μm, >153 μm)之容積密度,利用經驗正交函數(EOF)將聲學訊號強度、水文資料以及容積密度進行分析,發現聲學訊號四種頻率的強度和懸浮沉積物容積密度的相關性,容積密度越大,聲波訊號越強。經由容積密度推斷顆粒的體積大小,發現聲波對於體積大的顆粒有較強的回波。高頻率聲波對應到的為粒徑較小的群組,而頻率較低的聲波則是對粒徑較大的顆粒敏感。是否為生物源的顆粒也會影響濃度的計算,說明聲波訊號對於顆粒的特性有選擇性,因此能更準確的推算懸浮沉積物濃度及粒徑特徵。
兩次實驗的相關性皆不高的原因可能為利用儀器測量到的數據皆非直接資料而是反算的資料,與現場水樣直接分析的數據會有差距,且取樣的深度受到潮流以及其他因素影響。根據EOF、相關性分析以及統計分析的結果,探討懸浮顆粒在沖淡水和潮汐影響下的變化情形,並推論聲學儀器在此環境下的適用性以及未來發展。
Abstract
In the past, the suspended sediment concentration was mainly measured by optical backscattering devices and water sample filtration method. Acoustic instruments have some advantages that the optical ones do not have. For example, acoustic instruments are not affected by high turbidity, biofouling and high viscosity in the water. It will generate reflected and backscattered signals when the sound wave hit the suspended sediment. After the signal is converted to echo intensity value, we can estimate the suspended sediment grain size and concentration by using empirical formula. Therefore, in this study we explored the use of a multi-frequency acoustic instrument (AQUAscat-1000) to investigate the difference variation in the suspended sediment grain size, bulk density and concentration and compared the results measured by an optical instrument and filtered particle data.
The study sites were the coastal area south of Qinmen near Jiulong River mouth and the coastal area of the Pearl River mouth. These areas are tidal zones where river-ocean interactions are complex. Each experiment included deploying a instrumented mooring to investigate continuous river plume characteristic under the influence of tide. After measuring water temperature, salinity, chl-a and turbidity, collecting acoustic and optical data and water samples, we analyzed the suspended particle samples and compared the results. Different backscattered signals have different responses to bulk density of those three grain size groups(10-63 μm, 63-153 μm, >153 μm). Also, whether the particles are biogenic particles or not, affects the correlation of the data sets. According to the EOF analysis and linear correlation analysis, the applicability of the multi-frequency acoustic instrument to characterize and quantify suspended particles in the river plume regime needs to be investigated further.
目次 Table of Contents
論文審定書 i
致謝 ii
中文摘要 iii
英文摘要 v
目錄 vii
圖目錄 x
表目錄 xiv
第一章 序論 1
第一節 前言 1
第二節 前人研究 4
1-2-1 聲學儀器測量懸浮顆粒 4
1-2-2 其他測量顆粒的方法 5
1-2-3 沖淡水機制及特性 5
第三節 研究目的 9
第二章 研究區域 10
第一節 九龍江口 10
第二節 珠江口 13
第三章 現場觀測 15
第一節 實驗設計 15
第二節 九龍江口實驗 15
3-2-1 站位規劃 15
3-2-2 實驗及採樣過程 16
第三節 珠江口實驗 18
3-3-1 站位規劃 18
3-2-2 實驗及採樣過程 18
第四節 儀器介紹 21
3-4-1 研究船溫鹽深儀(CTD)附掛探針 21
3-4-2 現場雷射粒徑分析儀(LISST-100X) 21
3-4-3 多頻率聲學懸浮顆粒觀測儀(AQUAscat-1000) 22
3-4-4都卜勒流剖儀(AQUAdopp) 23
3-4-5 溫鹽深儀(XR-420、Concerto)搭載濁度探針 23
3-4-6 多層網目過濾系統(Catnet) 23
第四章 資料分析方法 25
第一節 聲學理論 25
第二節 絮凝顆粒的容積密度計算 (Bulk Density of Flocs,ρf) 29
第三節 經驗正交函數 (Empirical Orthogonal/Eigen Function) 29
第五章 觀測結果與資料分析 31
第一節 九龍江口實驗 31
5-1-1 水文環境 31
5-1-2 聲學儀器資料 35
5-1-3 光學儀器資料 37
5-1-4 現場水樣分析 38
第二節 珠江口實驗 40
5-2-1 水文環境 40
5-2-2 聲學儀器資料 43
5-2-3 光學儀器資料 45
5-2-4 現場水樣分析 47
第六章 討論 49
第一節 九龍江口環境及顆粒對聲學訊號的影響 49
6-1-1經驗正交函數分析討論 49
6-1-2多頻聲學儀器測量濃度與水樣比較 53
第二節 珠江口環境及顆粒對聲學訊號的影響 55
6-2-1經驗正交函數分析討論 55
6-2-2多頻聲學儀器測量濃度與水樣比較 59
第七章 結論 61
英文部份 63
中文部分 69
附錄 70
附錄一、九龍江口原始資料及特徵權重 70
附錄二、珠江口原始資料及特徵權重 72
參考文獻 References
Agrawal, Y. C., & Pottsmith, H. C. (2000). Instruments for particle size and settling velocity observations in sediment transport. Marine Geology, 168(1-4), 89-114.
Arnoux-Chiavassa, S., Rey, V., & Fraunie, P. (1999). Modelling of suspended sediment fluxes off the Rhone river mouth. Journal of coastal research, 61-73.
Betteridge, K. F., Thorne, P. D., & Cooke, R. D. (2008). Calibrating multi-frequency acoustic backscatter systems for studying near-bed suspended sediment transport processes. Continental Shelf Research, 28(2), 227-235.
Bowman, M. J. (1988). Estuarine fronts. Hydrodynamics of Estuaries, Vol. I, Estuarine Physics, 85-132.
Bursik, M. I. (1995). Theory of the sedimentation of suspended particles from fluvial plumes. Sedimentology, 42(6), 831-838.
Chao, S. Y., & Boicourt, W. C. (1986). Onset of estuarine plumes. Journal of Physical Oceanography, 16(12), 2137-2149.
Chao, S. Y. (1988). Wind-driven motion of estuarine plumes. Journal of Physical Oceanography, 18(8), 1144-1166.
Chen, G. C., Ye, Y., & Lu, C. Y. (2007). Changes of macro-benthic faunal community with stand age of rehabilitated Kandelia candel mangrove in Jiulongjiang Estuary, China. ecological engineering, 31(3), 215-224.
Crawford, A. M., & Hay, A. E. (1993). Determining suspended sand size and concentration from multifrequency acoustic backscatter. The Journal of the Acoustical Society of America, 94(6), 3312-3324.
Dietz, R. S. 1948. Deep scattering layer in the Pacific and Antarctic Oceans. J. mar. Res, 7(3), 430-442.
Downing, A., Thorne, P. D., & Vincent, C. E. (1995). Backscattering from a suspension in the near field of a piston transducer. The Journal of the Acoustical Society of America, 97(3), 1614-1620.
Du, X., & Liu, J. T. (2017). Particle dynamics of the surface, intermediate, and benthic nepheloid layers under contrasting conditions of summer monsoon and typhoon winds on the boundary between the Taiwan Strait and East China Sea. Progress in Oceanography, 156, 130-144.
Flammer, G. H. (1962). Ultrasonic measurement of suspended sediment (Vol. 1141). US Government Printing Office.
Gartner, J. W. (2004). Estimating suspended solids concentrations from backscatter intensity measured by acoustic Doppler current profiler in San Francisco Bay, California. Marine Geology, 211(3-4), 169-187.
Garvine, R. W., & Monk, J. D. (1974). Frontal structure of a river plume. Journal of Geophysical Research, 79(15), 2251-2259.
Gibbs, R. J. (1973). Mechanisms of trace metal transport in rivers. Science, 180(4081), 71-73.
Guerrero, M., Rüther, N., & Szupiany, R. N. (2012). Laboratory validation of acoustic Doppler current profiler (ADCP) techniques for suspended sediment investigations. Flow Measurement and Instrumentation, 23(1), 40-48.
Ha, H. K., Hsu, W. Y., Maa, J. Y., Shao, Y. Y., & Holland, C. W. (2009). Using ADV backscatter strength for measuring suspended cohesive sediment concentration. Continental Shelf Research, 29(10), 1310-1316.
Hayes, M. O., (1979). Barrier island morphology as a function of tidal and wave regime. In: Barrier island from the gulf of St. Lawrrence to the gulf of Mexico, Leatherman, S.P., Academic Press, New York, 1-27.
Hsu, R. T., & Liu, J. T. (2010). In-situ estimations of the density and porosity of flocs of varying sizes in a submarine canyon. Marine Geology, 276(1-4), 105-109.
Liu, J. T., Chao, S. Y., & Hsu, R. T. (1999). The influence of suspended sediments on the plume of a small mountainous river. Journal of coastal research, 1002-1010.
Liu, J. T., Chao, S. Y., & Hsu, R. T. (2002). Numerical modeling study of sediment dispersal by a river plume. Continental Shelf Research, 22(11-13), 1745-1773.
Liu, J. T., Hsu, R. T., Hung, J. J., Chang, Y. P., Wang, Y. H., Rendle-Bühring, R. H., ... & Yang, R. J. (2016). From the highest to the deepest: The Gaoping River–Gaoping Submarine Canyon dispersal system. Earth-science reviews, 153, 274-300.
Liu, J. T., Hung, J. J., H. L., Huh, C. A., Lee, C. L., Hsu, R. T., Huang, Y. W. and Chu, J. C., (2009). From suspended particles to strata: The fate of terrestrial substances in the Gaoping (Kaoping) submarine canyon. Journal of Marine Systems, 76(4), 417-432.
Liu, J. T., Wang, Y. H., Yang, R. J., Hsu, R. T., Kao, S. J., Lin, H. L., & Kuo, F. H. (2012). Cyclone‐induced hyperpycnal turbidity currents in a submarine canyon. Journal of Geophysical Research: Oceans, 117(C4).
Lee, J., Liu, J. T., Hung, C. C., Lin, S., & Du, X. (2016). River plume induced variability of suspended particle characteristics. Marine Geology, 380, 219-230.
Mao, Q., Shi, P., Yin, K., Gan, J., & Qi, Y. (2004). Tides and tidal currents in the Pearl River Estuary. Continental Shelf Research, 24(16), 1797-1808.
Milliman, J. D., & Syvitski, J. P. (1992). Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. The Journal of Geology, 100(5), 525-544.
Mulder, T., & Syvitski, J. P. (1995). Turbidity currents generated at river mouths during exceptional discharges to the world oceans. The Journal of Geology, 103(3), 285-299.
Peng, B., Chen, N., Lin, H., & Hong, H. (2013). Empirical appraisal of Jiulong River watershed management program. Ocean & coastal management, 81, 77-89.
Poerbandono Mayerle, R. (1998). Assesment of approaches for converting acoustic echo intensity into suspended sediment concentration. In Proc. 3rd FIG Regional Conference (Jakarta,) (pp. 1-13).
Thorne, P. D., & Hanes, D. M. (2002). A review of acoustic measurement of small-scale sediment processes. Continental shelf research, 22(4), 603-632.
Thorne, P. D., Hardcastle, P. J., & Hogg, A. (1996). Observations of near-bed suspended sediment turbulence structures using multifrequency acoustic backscattering. Coherent flow structures in open channels, 343-358.
Turner, A., & Millward, G. E. (2002). Suspended particles: their role in estuarine biogeochemical cycles. Estuarine, Coastal and Shelf Science, 55(6), 857-883.
Wright, L. D., 1(985). River deltas. In: Davis, R. A. Coastal Sedimentary Environments, New York, Springer, 1-76
Wright, L. D., & Nittrouer, C. A. (1995). Dispersal of river sediments in coastal seas: six contrasting cases. Estuaries, 18(3), 494-508.
Zhang, J., & Liu, C. L. (2002). Riverine composition and estuarine geochemistry of particulate metals in China—weathering features, anthropogenic impact and chemical fluxes. Estuarine, coastal and shelf science, 54(6), 1051-1070.
王元领, 陈坚, 曾志, 赵广涛, & 廖康明. (2005). 九龙江河口湾高浓度悬沙水体的分布与扩散特征. 台湾海峡, 24(3), 383-394.
王晋沅, & 江毓武. (2013). 九龙江河口盐度分布及其通量的动力过程分析.
吳珍怡. (2012). 利用多頻聲學儀器來探討水中懸浮沉積物粒徑及濃度變化之特性: 水槽實驗及現場實測, 國立中山大學海洋地質及化學研究所碩士論文, 共 119 頁.
胡方西, & 谷国传. (1989). 中国沿岸海域月平均潮差变化规律 (Doctoral dissertation).
徐勇航, & 陈坚. (2010). 台湾海峡西岸闽江口和九龙江口沉积物中碎屑锆石铀-铅定年及物源意义. 海洋学报, 32(4), 110-117.
张蔚, 严以新, 郑金海, & 吴宏旭. (2010). 珠江三角洲年际潮差长期变化趋势. 水科学进展, 21(1), 77-83.
许艳, 蔡锋, 卢惠泉, 吴承强, 郑勇玲, & 鲍晶晶. (2014). 福建闽江口和九龙江口外线状沉积沙体特征. 海洋学报, 36(5), 142-151.
程鹏, 高抒, & 李徐生. (2001). 激光粒度仪测试结果及其与沉降法, 筛析法的比较. 沉积学报, 19(3), 449-455.
楊仁凱. (2010). 沖淡水中粒徑結構之時空變化, 國立中山大學海洋地質及化學研究所碩士論文, 共 141 頁.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code