Responsive image
博碩士論文 etd-0721118-121356 詳細資訊
Title page for etd-0721118-121356
論文名稱
Title
鈦合金與鋁合金之摩擦攪拌點銲接過程的溫升與塑性流動之理論與實驗的研究
Theoretical and Experimental Studies on Temperature Rise and Plastic Flow of Ti Alloy to Al Alloy in FSSW Process
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
84
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-24
繳交日期
Date of Submission
2018-08-21
關鍵字
Keywords
鈦合金、內嵌式工具、異種金屬、摩擦攪拌點銲、塑性流動
Embedded-rod tool, dissimilar materials, FSSW, Ti alloy, plastic flow
統計
Statistics
本論文已被瀏覽 5726 次,被下載 0
The thesis/dissertation has been browsed 5726 times, has been downloaded 0 times.
中文摘要
本研究建立使用內嵌式銲接工具摩擦攪拌點銲搭接鈦合金(Ti-6Al-4V)與鋁合金(AA6061-T6)銲接過程中工件之溫度模型與塑性流動模型,接著與實驗結果進行比較並修正模型。探討不同工具轉速、下壓負荷及持壓時間對於工件材料之溫度與塑性流動層深度之影響,本研究也同樣探討商業級純鈦(CP Ti)對鋁合金(AA6061-T6)摩擦攪拌點銲接之結果。
結果顯示在兩板接合面中心溫度到達約730°C ~ 750°C時,熔融鋁合金有很大之機率會衝出鈦合金上板,而鋁合金衝出上板前,下壓負荷量測值會大於設定值約0 ~ 0.5 kN。下壓負荷及工具轉速越大,溫度上升的速率也就加快,但對於鋁合金衝出時之溫度影響並不明顯。而在12 kN 1200 rpm操作參數下,鋁合金衝出鈦合金上板的時間約在15~17秒左右。可透過其巨觀及微觀結構之觀察出鋁合金熔融區(FZ)與熱影響區(HAZ)之分界線,而與理論模型相符合。
在純鈦對鋁合金之摩擦攪拌點銲接過程中,下壓深度比起鈦合金更大幅增加,而且銲接工具在數秒內即穿破純鈦上板,其原因在於純鈦之強度比鈦合金低很多。而關於工具轉速及工具下壓負荷對下壓深度之影響,可看出在負荷越大則下壓深度上升較多,工具轉速較大則下壓深度較早開始上升。
Abstract
This study establishes the temperature model and plastic flow model of the workpiece during the welding process of the friction stir welding spot welding titanium alloy (Ti-6Al-4V) and aluminum alloy (AA6061-T6) using the an Embedded-rod tool, and then compares with the experimental results and fix the model. The effects of different rotational speeds, downward force and dwell times on the temperature and the depth of the plastic flow layer of the workpiece material were discussed. This study also explored the friction stir welding of commercial grade pure titanium (CP Ti) to aluminum alloy (AA6061-T6).
The results show that when the interface temperature of the two plates rose to about 730 ° C ~ 750 ° C, the molten aluminum alloy has a great chance of breaking through titanium alloy upper plate, and before that , the measured value of the downward force will be greater than the set value of about 0 ~ 0.5 kN. The greater the downward force and the rotational speed, the faster the rate of temperature rise, but The effect on the temperature when the aluminum alloy breaking through the titanium alloy was not obvious. Under the operating parameters of 12 kN 1200 rpm, the time for the aluminum alloy to break through the titanium alloy is about 15~17 seconds. The boundary between the fusion zone (FZ) and the heat affected zone (HAZ) of the aluminum alloy can be observed through its macrostructure and microstructure, which is consistent with the numerical model. In the friction stir point welding process of pure titanium to aluminum alloy, the plunge depth is greatly increased, and the welding tool penetrates the pure titanium upper plate in a few seconds. The greater the downward force, the greater the plunge depth, and the greater the rotational speed, the earlier plunge depth begins to rise.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖次 vii
表次 xi
第一章 緒論 1
1-1 前言 1
1.2 文獻回顧 3
1.2.1 摩擦攪拌銲接簡介 3
1.2.2 摩擦攪拌銲接之接合型態 5
1.2.3 摩擦攪拌點銲接(FSSW) 6
1.2.4 異種金屬摩擦攪拌銲接 9
1.2.5 鋁合金對鈦合金摩擦攪拌銲接 10
1.2.6摩擦攪拌銲接理論研究 11
1.3 研究目的 13
1.4 論文架構 13
第二章 實驗設備及方法與理論模型 14
2.1 實驗設備 14
2.1.1 實驗機台 14
2.1.2 實驗試片 17
2.1.3 內嵌式工具 19
2.2 實驗方法 20
2.2.1 實驗參數規劃 20
2.2.2 銲接位置 20
2.2.3 銲接過程之溫度量測位置 21
2.2.4 實驗程序 22
2.3 理論模型 23
2.3.1 熱傳模型 24
2.3.2 材料塑性流動模型 27
2.3.3 摩擦模型 28
2.3.4 邊界條件 30
第三章 實驗結果與討論 33
3.1下壓負荷對鈦合金/鋁合金摩擦攪拌銲接之影響 33
3.2 轉速對鈦合金/鋁合金摩擦攪拌銲接之影響 46
3.3 鈦合金/鋁合金摩擦攪拌銲接在不同持壓時間下之銲接結果 54
3.4 純鈦/鋁合金之摩擦攪拌銲接 61
第四章 結論與未來展望 66
4.1 結論 66
4.2 未來展望 67
參考文獻 68
參考文獻 References
[1] W.M. Thomas, E. D. Nicholas, J.C. Needham, M.G. Murch, P. Temple-Smith and C.J. Dawes. (1991). Friction stir butt welding. International Patent Application. PCT/GB92/02203 and GB Patent Application 9125978.8.
[2] Mishra, R.S. and Ma, Z.Y., "Friction stir welding and processing.". Materials Science and Engineering R50(2005):1-78.
[3] Mishra, R.S., De, P.S. and Kumar, N., "Friction stir welding and processing science and engineering". (2014), New York: Springer.
[4] Liu, H., Fujii, H., Maeda, M. and Nog, K., "Tensile properties and fracture locations of friction-stir welded joints of 6061-T6 aluminum alloy". Journal of Materials Science Letters 22(2003):1061-1063
[5] R.S. Mishra and Z.Y. Ma.. "Friction stir welding and processing. ".Materials Science and Engineering R, (2005)50(1-2), 1-78.
[6] Sakano, R., Murakami, K. and Yamashita, K., "Development of spot FSW robot system for automobile body members". in Proceedings of the 3rd International Symposium of Friction Stir Welding and Metal Fabrication, Kobe, Japan (2004).
[7] Nguyen, N.T., Kim, D.Y. and Kim, H.Y., "Assessment of the failure load for an AA6061-T6 friction stir spot welding joint". Proceedings of the Institution of Mechanical Engineers B: Journal of Engineering Manufacture 225(2011):1746– 1756.
[8] Tozaki, Y., Uematsu, Y. and Tokaji, K., "A newly developed tool without probe for friction stir spot welding and its performance". Journal of Materials Processing Technology 210(2010):844–851.
[9] Cox, C.D., Gibson, B.T., Strauss, A.M. and Cook, G.E., "Effect of Pin Length and Rotation Rate on the Tensile Strength of a Friction Stir Spot-Welded Al Alloy: A Contribution to Automated Production". Materials and Manufacturing Processes 27(2012):472–478.

[10] Chiou, Y.C., Liu, C.T. and Lee, R.T., "A pinless embedded tool used in FSLW and FSW of aluminum alloy". Journal of Materials Processing Technology 213(2013):1818-1824.
[11] Sato, Y.S., Park, S.H.C., Michiuchi, M. and Kokawa, H., "Constitutional liquation during dissimilar friction stir welding of Al and Mg alloys". Scripta Materialia 50(2004):1233-1236.
[12] Miyagawa, K., Tsubaki, M., Yasui, T. and Fukumoto, M., "Spot welding between aluminium alloy and low-carbon steel byfriction stirring" Welding International 23(2009):559-564.
[13] U. Dressler, G. Biallas, U. Alfaro Mercado, "Friction stir welding of titanium alloy TiAl6V4 to aluminium alloy AA2024-T3". Materials Science and Engineering A,( 2009).6: p.113–117.
[14] Y.C. Chen, K. Nakata, "Microstructural characterization and mechanical properties in friction stir welding of aluminum and titanium dissimilar alloys. " Materials & Design, (2009): p. 469–474.
[15] Y. Chen, Q. Ni, L. Ke, "Interface characteristic of friction stir welding lap joints of Ti/Al dissimilar alloys. " Transactions of Nonferrous Metals Society, (2012).22: p. 299–304.
[16] L. Xu, Y.Y. Cui,Y. L.Hao, R.Yang, "Growth of intermetallic layer in multi-laminated Ti/Al diffusion couples". Materials Science and Engineering A, (2006). 435–436: p. 638–647.
[17] J.E. Gould and Z. Feng, "Heat flow model for friction sitr welding of aluminum alloys". Journal of Materials Processing & Manufacturing Science, 7 (1998) 185- 194
[18] Ø. Frigaard, Ø. Grong, and O.T. Midling, "A Process Model for Friction Stir
Welding of Age Hardening Aluminum Alloys". Metallurgical and Materials Transactions A, 32A (2001) 1189-1200
[19] A. Askari, S. Silling, B. London and M. Mahoney, "Modeling and analysis of
friction stir welding processes". in: K.V. Jata, M.W. Mahoney, R.S. Mishra, S.L. Semiatin, D.P. Field (Eds.), Friction Stir Welding and Processing, TMS, Warrendale, (2001) 43-54

[20] P. Ulysse, "Three-dimensional modeling of the friction stir-welding process. " International Journal of Machine Tools and Manufacture, 42 (2002) 1549-1557
[21] M. Song and R. Kovacevic, "Numerical and experimental study of the heat
transfer process in friction stir welding". Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 217 (2003) 73-85
[22] M. Song and R. Kovacevic, "Thermal modeling of friction stir welding in a moving coordinate system and its validation". International Journal of MachineTools & Manufacture, 43(2003) 605-615
[23] M. Song and R. Kovacevic, "Heat transfer modeling for both workpiece and tool in the friction stir welding process: a coupled model". Proceedings of the Institution of Mechanical Engineers, Part B: J. Engineering Manufacture, 218
(2004) 17-33
[24] H. Schmidt, J. Hattel, and J. Wert, "An analytical model for the heat generation in friction stir welding". Modeling Simul. Mater. Sci. Eng. , 12(2004) 143-157
[25] R. Nandan, G.G. Roy, and T. DebRoy, "Numerical Simulation of Three Dimensional Heat Transfer and Plastic Flow During Friction Stir Welding". Metallurgical and Materials Transactions A, 37A(2006) 1247-1259
[26] R. Nandan, B. Prabu, A. De, and T. DebRoy, "Improving Reliability of Heat Transfer and Materials Flow Calculations during Friction Stir Welding of Dissimilar Aluminum Alloys". Welding Journal, 86(2007) 313-322
[27] R. Nandan, G.G. Roy, T.J. Lienert, and T. DebRoy, "Three-dimensional heat and material flow during friction stir of mild steel". Acta Materialia , 55(2007) 883-895
[28] 歐恒睿,"理論解析異種金屬摩擦攪拌銲接之熱傳導與塑性流動",機械與機電工程學系研究所,(2015) 國立中山大學,。
[29] 黃一勛, "內嵌式工具應用於異種金屬摩擦攪拌銲接之擠壓過程中的熱傳導與材料流動之理論解析", 機械與機電工程學系研究所.(2016), 國立中山大學
[30] 邱源成, 李榮宗, 謝銘哲, " 摩擦攪拌熔接工作台及其夾具". R.O.C., I415702(2013).
[31] Hsieh, M.J., Lee, R.T., and Chiou, Y.C.,. "Friction Stir Spot Fusion Welding of Low-Carbon Steel to Aluminum Alloy", J. Mater. Proc. Technol. (2016)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.91.245.93
論文開放下載的時間是 校外不公開

Your IP address is 3.91.245.93
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code