Responsive image
博碩士論文 etd-0721118-122642 詳細資訊
Title page for etd-0721118-122642
論文名稱
Title
利用雙斜角光纖及空心光纖製作高靈敏度的開放式共振腔法布立-培若光纖干涉儀感測器
Highly Sensitive Open-cavity Fabry–Pérot Interferometer sensors by Integrating Hollow-core Fiber and Double-beveled Single-mode Fiber
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
98
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-26
繳交日期
Date of Submission
2018-08-21
關鍵字
Keywords
光纖感測器、研磨製程、雙楔型研磨光纖、Fabry-Pérot光纖干涉儀、開放式共振腔
Fiber-optic Fabry-pérot interferometers, Polished machining, Fiber sensor, Double-beveled single-mode fiber, Open cavity
統計
Statistics
本論文已被瀏覽 5618 次,被下載 0
The thesis/dissertation has been browsed 5618 times, has been downloaded 0 times.
中文摘要
Fabry-Pérot光纖干涉儀感測器具有結構緊湊、高靈敏度和抗電磁干擾等優點,因此被廣泛應用於各種領域。然而過去製作開放式Fabry-Pérot光纖干涉儀常使用化學蝕刻或利用高功率雷射進行加工,使得製作過程既危險又昂貴。本論文使用光纖研磨製程來製作開放式共振腔Fabry-Pérot光纖干涉儀,相對於其他製程,研磨技術更加安全與便宜。我們將研磨製作的楔型光纖熔接上空心光纖,使熔接區域產生缺口,因此空心光纖會形成開放式的共振腔,能夠讓外界待測物進入共振腔中進行感測。
利用此開放式Fabry-Pérot光纖干涉儀可以對環境折射率、氣壓以及溫度進行感測。折射率變化為1.333至1.3403時,元件對折射率的響應時間只需80ms,折射率靈敏度高達1189.80nm/RIU,且對於折射率量測之誤差量僅 RIU。將氣壓控制在0psi至80psi時量測,元件的氣壓靈敏度為28pm/psi,相較於純光纖結構的光纖感測器具有更好的靈敏度。最後將元件熱退火釋放內應力後,在溫度變化30°C~70°C時,元件的溫度靈敏度為3.4pm/℃,顯示元件不易受到環境溫度影響。綜合上述觀點,我們所製作的開放式共振腔Fabry-Pérot光纖干涉儀對於環境折射率及氣壓的感測具有高度的應用潛能。
Abstract
Fiber-optic Fabry-Pérot interferometers (FPIs) have been widely applied in many fields due to their superior properties such as compact size, high sensitivity, and immunity to electromagnetic interference. In previous research, open-cavity FPIs are usually fabricated by chemical etching or high power laser machining, which potentially has dangers and is expensive. In this thesis we used polished machining to make an open-cavity FPI. The double-polished single-mode fiber (SMF) is spliced with a hollow-core fiber (HCF) to form an open-cavity FPI sensor. The sensing material can be easily placed into the cavity to realize the refractive index (RI) sensing.
We used the fabricated FPI for RI, gas pressure, and temperature sensing. In the RI range of 1.333 to 1.3403, the RI sensitivity of our FPI is 1189.80nm/RIU. The sensing response time is 80 ms, and the RI sensing deviation is only RIU. As we control the gas pressure between 0psi to 80psi, the gas sensitivity is 28pm/psi. Compared with other all-fiber gas pressure sensor, our fabricated open-cavity FPI has a larger sensitivity. In addition, after the anneal process to release the residual stress in the FPI, the temperature sensitivity is 3.4pm/℃ as the temperature is between 30℃ to 70℃, which illustrates the FPI can be used without temperature disturbance. As a result, our open cavity FPI sensor has high potential for RI and gas pressure sensing.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 xi
第一章 序論 1
1-1 光纖簡介 1
1-2光纖干涉儀感測器 4
1-2.1法布立-培若光纖干涉儀(Fabry-Pérot fiber interferometer) 5
1-2.2馬赫-任德爾光纖干涉儀(Mach-Zehnder fiber interferometer) 9
1-2.3麥克森光纖干涉儀(Michelson fiber interferometer) 11
1-3 研究動機 13
第二章 Fabry-Pérot光纖干涉儀 14
2-1 Fabry-Pérot干涉儀的原理 14
2-2 Fabry-Pérot光纖干涉儀 23
第三章 開放式共振腔Fabry-Pérot光纖干涉儀的製作 27
3-1元件設計 27
3-2 元件製作 28
3-2.1光纖與實驗儀器介紹 28
3-2.2元件製作 31
第四章 開放式共振腔Fabry-Pérot光纖干涉儀基本特性 37
4-1 實驗架設 37
4-2雙楔型研磨光纖對形成開放式共振腔與干涉頻譜之影響 39
4-2.1研磨角度對元件的影響 39
4-2.2研磨面積對元件的影響 42
4-3不同共振腔長度元件的干涉頻譜 45
4-3.1共振腔長與自由光譜範圍(Free Spectral Range, FSR)的關係 46
4-3.2共振腔長與消光比(Extinction, ER)的關係 47
第五章 開放式共振腔Fabry-Pérot光纖干涉儀之感測應用 50
5-1 折射率感測 50
5-1.1量測架設 50
5-1.2折射率量測 51
5-1.3折射率穩定度量測 56
5-1.4響應時間 57
5-2 氣壓感測 60
5-2.1量測架設 60
5-2.2氣壓量測 61
5-2.3氣壓穩定度量測 65
5-2.4文獻比較 67
5-3溫度感測 70
5-3.1量測架設 70
5-3.2溫度感測與理論 71
5-3.3退火優化 74
第六章 結論 78
參考文獻 79
參考文獻 References
[1] A. L. Schawlow and C. H. Townes, “Infrared and optical maser,” Phys. Rev., vol. 112, iss. 6, 1958.
[2] J. Hecht, “Short history of laser development,” Appl. Opt., vol. 49, pp. 091002-1-091002-23, 2010.
[3] K. C. Kao and G. A. Hockham, “Dielectric-fibre surface waveguides for optical frequencies,” Proceedings of the Institution of Electrical Engineers-London, vol. 113, pp. 1151-1158, 1966.
[4] D. J. Sterling and L. Chartrand, Technician's Guide to Fiber Optics, 2004.
[5] D. Gloge, “Weakly guiding fibers,” Appl. Opt., vol. 10, pp. 2252-2258, 1971.
[6] J. Tian, Z. Lu, M. Quan, Y. Jiao, and Y. Yao, “Fast response Fabry-Pérot interferometer microfluidic refractive index fiber sensor based on concave-core photonic crystal fiber,” Opt. Express, vol. 24, pp. 20132–20142, 2016.
[7] V. Bhardwaj, R. K. Gangwar, and V. K. Singh, “Silicone rubber coated highly sensitive optical fiber sensor for temperature measurement,” Opt. Eng., vol. 55, pp. 126107-1-126107-5, 2016.
[8] F. Zhou, S. J. Qiu, W. Luo, F. Xu, and Y. Q. Lu, “An all-fiber reflective hydrogen sensor based on a photonic crystal fiber in-line interferometer,” IEEE Sens. J., vol. 14, pp. 1133-1136, 2014.
[9] V. Bhardwaj, A. K. Pathak, and V. K. Singh, “No-core fiber-based highly sensitive optical fiber pH sensor,” J. Biomed. Opt., vol. 22, pp. 057001-1-057001-9, 2017.
[10] F. Shi, X. Bai, F. Wang, F. Pang, S. Pu, and X. Zeng, “All-fiber magnetic field sensor based on hollow optical fiber and magnetic fluid,” IEEE Sens. J., vol. 17, pp. 619-622, 2017.
[11] R. Wang and X. Qiao, “Gas refractometer based on optical fiber extrinsic Fabry-Pérot interferometer with open cavity,” IEEE Photon. Technol. Lett., vol. 27, pp. 245-248, 2014.
[12] J. Zhou, Y. Wang, C. Liao, G. Yin, X Xu, K. Yang, X. Zhong, Q. Wang, and Z. Li, “Intensity-modulated strain sensor based on fiber in-line Mach-Zehnder interferometer,” IEEE Photon. Technol. Lett., vol. 26, pp. 508-511, 2014.
[13] J. Z. Ou, M. H. Yaacob, J. L. Campbell, M. Breedon, K. Z. Kourosh, and W. Wlodarski, “ sensing performance of optical fiber coated with nano-platelet WO3 film,” Sens. actuators. B Chem., vol. 166-167, pp.1-7, 2012.
[14] J. Shi, Y. Wang, D. Xu, T. Liu, W. Xu, C. Zhang, C. Yan, D. Yan, L. Tang, Y. He, and J. Yao, “Temperature self-compensation high-resolution refractive index sensor based on fiber ring laser,” IEEE Photon. Technol. Lett., vol. 29, pp. 1743-1746, 2017.
[15] X. Yu, X. Chen, D. Bu, J. Zhang, and S. Liu, “In-fiber modal interferometer for simultaneous measurement of refractive index and temperature,” IEEE Photon. Technol. Lett., vol. 28, pp. 189-192, 2016.
[16] Z. Y. Huang, Y. Z. Zhu, X. P. Chen, and A. B. Wang, “Intrinsic Fabry-Pérot fiber sensor for temperature and strain measurements,” IEEE Photon. Technol. Lett., vol. 17, pp. 2403-2405, 2007.
[17] Y. J. Rao, T. Zhu, X. C. Yang, and D. W. Duan, “In-line fiber-optic etalon formed by hollow-core photonic crystal fiber,” Opt. Lett., vol. 32, pp. 2662-2664, 2007.
[18] Y. Zhao, P. Wang, R. Lv, and X. Liu, “Highly sensitive airflow sensor based on Fabry-Pérot interferometer and vernier effect,” J. Lightw. Technol., vol. 34, pp. 5351-5356, 2016.
[19] N. Zhao, Q. Lin, W. Jiang, Z. Jiang, Z. Wu, B. Tian, and Z. Zhang, “High-temperature Fabry-Pérot interferometer based on mode analysis,” Micro Nano Lett., vol. 13, pp. 198-201, 2018.
[20] Y. Bai, Y. Qi, Y. Dong, and S. Jian, “Highly sensitive temperature and pressure sensor based on Fabry-Pérot interference,” IEEE Photon. Technol. Lett., vol. 28, pp. 2471-2474, 2016.
[21] B. Xu, Y. Liu, D. Wang, D. Jia, and C. Jiang, “Optical fiber Fabry-Pérot interferometer based on an air cavity for gas pressure sensing,” IEEE Photon. J., vol. 9, pp. 1-10, 2017.
[22] J. Tang, G. Yin, C. Liao, S. Liu, Z. Li, X. Zhong, Q. Wang, J. Zhao, K. Yang, and Y. Wang, “High-sensitivity gas pressure sensor based on Fabry-Pérot interferometer with a side-opened channel in hollow-core photonic bandgap fiber,” IEEE Photon. J., vol. 7, pp. 1-7, 2015.
[23] M. Wang, M. Yang, J. Cheng, G. Zhang, C. R. Liao, and D. N. Wang, “Fabry-Pérot interferometer sensor fabricated by femtosecond laser for hydrogen sensing,” IEEE Photon. Technol. Lett., vol. 25, pp. 713-716, 2013.
[24] Y. Wu, Y. Zhang, J. Wu, and P. Yuan, “Fiber-optic hybrid-structured Fabry-Pérot interferometer based on large lateral offset splicing for simultaneous measurement of strain and temperature,” J. Lightw. Technol., vol. 35, pp. 4311-4315, 2017.
[25] D. W. Duan, Y. J. Rao, and T. Zhu, “High sensitivity gas refractometer based on all-fiber open-cavity Fabry-Pérot interferometer formed by large lateral offset splicing,” J. Opt. Soc. Am. B, vol. 29, pp.912-915, 2012.
[26] S. Wu, G. Yan, B. Zhou, E. H. Lee, and S. He, “Open-cavity Fabry-Pérot interferometer based on etched side-hole fiber for microfluidic sensing,” IEEE Photon. Technol. Lett., vol. 27, pp. 1813-1816, 2015.
[27] R. Wang, P. Huang, J. He, and X. Qiao, “Gas refractometer based on a side-open fiber optic Fabry-Pérot interferometer,” Appl. Opt., vol. 49, pp. 1593-1598, 2010.
[28] S. Pevec and D. Donlagic, “Miniature all-fiber Fabry-Pérot sensor for simultaneous measurement of pressure and temperature,” Appl. Opt., vol. 51, pp. 4536-4541, 2012.
[29] Q. Wang, L. Kong, Y. Dang, F. Xia, Y. Zhang, Y. Zhao, H. Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer,” Sens. Actuators B: Chem., vol 225, pp. 213-220, 2016.
[30] Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, K. Guo, M. Deng, S. Cao, and Y. Wang, “Hollow-core-fiber-based interferometer for high-temperature measurements,” IEEE Photon. J., vol. 9, pp. 1-9, 2017.
[31] X. Q. Lei, B. J. Peng, D. R. Chen, Q. G. Shi, and X. W. Ma, “An all-fiber magnetic field sensor based on dual-s-shaped optic fiber integrated with magnetic fluid,” IEEE Sen. J., vol. 16, pp. 958-964, 2015.
[32] L. Zhang, D. N. Wang, J. Liu, and H. F. Chen, “Simultaneous refractive index and temperature sensing with precise sensing location,” IEEE Photon. Technol. Lett., vol. 28, pp. 891-894, 2016.
[33] H. Cao and X. Shu, “Miniature all-fiber high temperature sensor based on Michelson interferometer formed with a novel core-mismatching fiber joint,” IEEE Sen. J., vol. 17, pp. 3341-3345, 2017.
[34] G. Hernandez, Fabry-Pérot Interferometers. Cambridge University Press, 1986.
[35] F. A. Jenkins, and H. E. White, Fundamentals of Optics., McGraw-Hill, NewYork, pp 286-314, 1957.
[36] A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed., Oxford University Press, 2007.
[37] M. Bass, C. DeCusatis, J. M. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. N. Mahajan, and E. V. Stryland, Handbook of Optics., 3rd ed., McGraw-Hill, NewYork, 2009.
[38] Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Pérot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express, vol. 16, pp. 2252-2263, 2008.
[39] W. H. Hsieh, C. N. Liu, Y. C. Huang, C. A. Hsu, S. C. Lei, Y. C. Hsu, Y. C. Tsai, C. H. Lin, C. P. Yu, and W. H. Cheng, “A new scheme of oriented hyperboloid microlens for passive alignment lasers to polarization maintaining fibers,” J. Lightw. Technol., vol. 33, pp. 4187-4192, 2015.
[40] 許正安(2014)。熊貓型光纖端面研磨機設計與製造。正修科技大學機電工程研究所碩士論文。高雄市。
[41] W. M. B. Yunus and A. B. A. Rahman, “Refractive index of solutions at high concentrations,” Appl. Opt., vol. 27, pp. 3341-3343, 1988.
[42] G. B. Hocker, “Fiber-optic sensing of pressure and temperature,” Appl. Opt., vol. 18, pp. 1445-1448, 1979.
[43] C. C. Bradley and H. A. Gebbie, “Refractive index of nitrogen, water vapor, and their mixtures at submillimeter wavelengths,” Appl. Opt., vol. 10, pp. 755-758, 1971.
[44] R. Wang and X. Qiao, “Intrinsic Fabry-Pérot interferometer based on concave well on fiber end,” IEEE Photon. Technol. Lett., vol. 26, pp. 1430-1433, 2014.
[45] R. Wang and X. Qiao, “Gas refractometer based on optical fiber extrinsic Fabry-Pérot interferometer with open cavity,” IEEE Photon. Technol. Lett., vol. 27, pp. 245-248, 2015.
[46] G. Z. Xiao, A. Adnet, Z. Zhang, Z. Lu, and C. P. Grover, “Fiber-optic Fabry-Pérot interferometric gas-pressure sensors embedded in pressure fittings,” Microw. Opt. Techn. Let., vol. 42, pp. 486-489, 2004.
[47] L. Jin, B. O. Guan, and H. Wei, “Sensitivity characteristics of Fabry-Pérot pressure sensors based on hollow-core microstructured fibers,” J. Lightw. Technol., vol. 31, pp. 2526-2532, 2013.
[48] Z. Zhang, C. Liao, J. Tang, Z. Bai, K. Guo, M. Hou, J. He, Y. Wang, S. Liu, F. Zhang, and Y. Wang, “High-sensitivity gas-pressure sensor based on fiber-tip pvc diaphragm Fabry-Pérot interferometer,” J. Lightw. Technol., vol. 35, pp. 4067-4071, 2017.
[49] F. Xu, D. Ren, X. Shi, C. Li, W. Lu, L. Lu, L. Lu, and B. Yu, “High-sensitivity Fabry-Pérot interferometric pressure sensor based on a nanothick silver diaphragm,” Opt. Lett., vol. 15, pp. 133-135, 2012.
[50] J. Ma, W. Jin, H. L. Ho, and J. Y. Dai, “High-sensitivity fiber-tip pressure sensor with graphene diaphragm,” Opt. Lett., vol. 37, pp. 2493-2495, 2012.
[51] J. Liu, P. Jia, H. Zhang, X. Tian, H. Liang, Y. Hong, T. Liang, W. Liu, and J. Xiong, “Fiber-optic Fabry-Pérot pressure sensor based on low-temperature co-fired ceramic technology for high-temperature applications,” Appl. Opt., vol. 57, pp. 4211-4215, 2018.
[52] X. Zou, Nan Wu, Y. Tian, J. Ouyang, K. Barringhaus, and X. Wang, “Miniature Fabry-Pérot fiber optic sensor for intravascular blood temperature measurements,” IEEE Sens. J., vol. 13, pp. 2155-2160, 2013.
[53] Z. Feng, J. Li, X. Qiao, L. Li, H. Yang, and M. Hu, “A thermally annealed Mach-Zehnder interferometer for high temperature measurement,” Sensor, vol. 14, pp. 14210-14221, 2014.
[54] Q. Rong, X. Qiao, T. Guo, H. Yang, Y. Du, D. Su, R. Wang, H. Sun, Di. Feng, and M. Hu, “High temperature measurement up to 1100 ℃ using a polarization-maintaining photonic crystal fiber,” IEEE Photon. J., vol. 6, no. 1, pp. 1-10, 2014.
[55] H. Cao and X. Shu, “Miniature all-fiber high temperature sensor based on Michelson interferometer formed with a novel core-mismatching fiber joint,” IEEE Sens. J., vol. 17, pp. 3341-3345, 2017.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code