Responsive image
博碩士論文 etd-0721118-130640 詳細資訊
Title page for etd-0721118-130640
論文名稱
Title
應用旋轉壓縮於金屬粉末熱壓成形之研究
Hot Pressing of Metal Powder by Rotating Compression
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
98
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-31
繳交日期
Date of Submission
2018-08-21
關鍵字
Keywords
硬度試驗、金相觀察、旋轉壓縮、粉末材料
Metallographic observation, Hardness test, Rotating Compression Forming, Powder Material
統計
Statistics
本論文已被瀏覽 5648 次,被下載 7
The thesis/dissertation has been browsed 5648 times, has been downloaded 7 times.
中文摘要
本研究以實驗手法探討使用旋轉壓縮熱壓成形獲得具有微結構與硬度梯度之粉末材料,使用材料為325 mesh純鋁粉。將純鋁粉末裝填於一直徑為20mm之圓柱形容器。在加熱同時,使上模旋轉,而下模受壓縮作用。藉由在壓縮應力中加入剪切應力造成的塑性變形,將金屬粉末材料固化成形,並透過大應變細化材料內部組織。本實驗驗證了旋轉壓縮法用於成形金屬粉末的可行性,使用一字型上模具驅動壓餅旋轉之模具形式,此種模具能更容易成形粉末試片,在取出試片時能有效防止試片破裂,並減輕模具的磨損。後續分別透過金相觀察與硬度試驗,探討各參數對旋轉壓縮成形結果之影響。
純鋁粉末旋轉壓縮固化成形試片,比純鋁實心材料擁有較高的降伏強度。而有施加旋轉作用的試片,相較沒有施加旋轉,僅受單軸壓縮的試片能獲得更高的粉末密度,並且有更高的平均硬度值,其試片內部材料性質分布將會變得具有規律性。透過金相觀察,旋轉使其材料內部晶粒得到了較大的塑性變形,並觀察到耐腐蝕的次微米細晶區的產生。細晶區從接觸面之圓周發生,隨旋轉圈數增加往圓心及垂直方向擴張。提高壓力及提升溫度能獲得較高的平均硬度值,旋轉圈數增加及轉速降低能獲得更均勻之半徑方向之硬度值,也能獲得較大的垂直方向之硬度梯度。
Abstract
In this study, the powder material with microstructure and hardness gradient was obtained from hot pressing by Rotating Compression.The pure aluminum powder was packed in a cylindrical container having a diameter of 20 mm. While the mold is being heated, the top die is rotated while the bottom die is compressed. The metal powder material is solidified by plastic deformation caused by the addition of shear stress in the compressive stress. And the internal structure of the material is refined by large strain. This experiment verifies the feasibility of the hot pressing of metal powder by Rotating Compression. The flat-blade die is used to drive the pressing pad. The contact end form can better solidify the metal powder, it can effectively prevent the specimen from tearing when the specimens was taken out, and reduce the wear of the mold. The effects of Rotating Compression Forming of each parameter were discussed through metallographic observation and hardness test.
Pure aluminum powder rotating compression specimen has a higher yield strength than pure aluminum solid material. The specimen with a rotating action can obtain a higher density than the specimen which is only uniaxially compressed without rotation. Through the metallographic observation, the internal structure of the material was greatly plastically deformed by rotation, and the generation of the corrosion-resistant submicron fine grain region is observed. The fine-grained zone occurs from the circumference of the contact surface and expands toward the center of the circle and in the vertical direction as the rotation numbers increases. Increasing the pressure and raising the temperature can obtain a higher average hardness value, and the increase in the number of revolutions and the decrease in the rotational speed can obtain a more uniform hardness value in the radial direction and a larger vertical hardness gradient.
目次 Table of Contents
論文審定書 i
謝誌 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 xii
符號說明 xiii
第一章 緒論 1
1.1 前言 1
1.2 鋁金屬介紹 2
純鋁粉末之特性與製備 2
1.3 粉末冶金 5
1.3.1 粉末冶金原理 5
1.3.2 燒結 5
1.3.3近代金屬粉末的固化成形方式 6
1.3.4現在發展中新型態的粉末固化技術 9
1.3.5 晶粒尺寸效應 11
1.4 旋轉壓縮成形簡介 12
1.4.1旋轉壓縮成形 12
1.4.2製程參數 13
1.5 文獻回顧 13
1.5.1純鋁晶粒細化之相關文獻 13
1.5.2壓縮扭轉加工(CPT)之相關文獻 13
1.5.3高壓扭轉成形(HPT)之相關文獻 14
1.5.4常溫壓縮剪切法(CMOS-RT)之相關文獻 14
1.6 研究動機與論文架構 15
1.6.1研究動機 15
1.6.2論文架構 15
第二章 旋轉壓縮實驗 17
2.1 純鋁粉末旋轉壓縮實驗 17
2.1.1旋轉壓縮機台介紹 17
2.1.2旋轉壓縮機台改裝 19
2.2 旋轉壓縮實驗簡介 20
2.2.1實驗試片之成形材料 20
2.2.2旋轉壓縮實驗參數之設定 20
2.2.3實驗流程 21
2.3 實驗試片成品 23
2.4 實驗試片成分分析 24
2.5 試片密度量測 26
2.6 壓縮試驗 29
2.7 前導實驗 32
第三章 金相觀察備製與結果 36
3.1金相觀察備製 36
3.2垂直面之金相觀察結果 40
第四章 硬度試驗與結果 60
4.1硬度試驗備製 60
4.2垂直面之硬度試驗結果 61
第五章 結論 78
5.1 結論 78
5.2 未來展望與建議 79
參考文獻 80
參考文獻 References
[1] 黃揚升, “金屬粉末的製程與應用,” 金屬中心產業報告, Pages 10-14, 2016.
[2] 島進, “粉末の成形と加工,”粉からニアネットシェイプへ,Pages 6-8, 日本塑性加工学会,1994
[3] Y. OZAKI, N. NAKAMURA, S. UNAMI, T. ONO, T. TAKASHITA, “Development of Elemental Powder Forming Techniques Aimed at High Value-Added Powder Metallurgical Products,” Journal of the Japen Society for the Technology Plasticity, Vol. 58, No. 678, 2017
[4] VINCENT Vacuum Tech http://www.vvt.com.tw/Mim
[5] https://en.wikipedia.org/wiki/Selective_laser_melting
[6] N. KANETAKE, “Consolidation of Metal Powder,” Journal of the Japen Society for the Technology Plasticity, Vol. 56, No. 651, 2015
[7] T. TAKAHASHI, Y. KUME, M. KOBASHI, N. KANETAKE, “Solid State Recycling of Aluminum Machined Chip Wastes by Compressive Torsion Processing,” Journal of Japan Institute of Light Metals, Vol. 59, No. 7, Pages 354–358, 2009
[8] A.P. ZHILYAEV, S. LEE, G.V. NURISLAMOVA, R.Z. VALIEV, T.G. LANGDON, “Micro hardness and microstructural evolution in pure nickel during high-pressure torsion,” Scripta mater, Vol.44, Pages 2753-2758, 2001.
[9] N. NAKAYAMA, M. HORITA, H. MIKI, T. MIYAZAKI, H. TAKEISHI, “Effects of Powder Size and Shape on Microstructure of Al Thin Plate Formed by Compression Shearing Method at Room Temperature,” Journal of the Japen Society for the Technology Plasticity, Vol. 54 No.625, Pages 191-195, 2013
[10] N. KAMIKAWA, X. HUANG, N. TSUJI, N. HANSEN, “Strengthening Mechanisms in Nanostructured High-Purity Aluminium Deformed to High Strain and Annealed,” Acta Materialia, Vol. 57, 2009
[11] 蘭勝威,曾新吾, “晶粒度对纯铝动态力学性能的影响,” EXPLOSION AND SHOCK WAVES, Vol. 28, No.5, 2008
[12] 林敬量, “商用純鋁在不同溫度經平面應變後之組織研究,” 碩士論文, 國立中山大學材料科學系, 高雄, 台灣, 2003
[13] K. TSUTSUI, Y. KUME, M. KOBASHI, N. KANETAKE, “Effect of processing temperature on microstructure of AZ61 magnesium alloy produced by compressive torsion processing,” Journal of Japan Institute of Light Metals, Vol. 59, No. 1, Pages 35-40, 2009.
[14] Y. KUME, S. SHIBAZAKI, M. KOBASHI, N. KANETAKE, “Development of grain refinement in AZ61 magnesium alloy processd by compressive torsion with decreasing temperature,” Proceedings of the Japanese Joint Conference for the Technology of Plasticity, Vol.62, Pages 305-306, 2011.
[15] R. ITO, Y. KUME, M. KOBASHI, N. KANETAKE, “Effect of Specimen Size on High-Density Iron Powder Compact Formed by Compression and Shear Combined Loading,” Journal of the Japen Society for the Technology Plasticity, Vol.54, no.634, Pages 1003-1007, 2013.
[16] 董传勇,薛克敏,李琦,李萍, “高压扭转法制备粉末块体超细晶材料,”Journal of Zhejiang University of Science and Technology,Vol. 21, No.3, 2009
[17] A.P. ZHILYAEV, S. LEE, G.V. NURISLAMOVA, R.Z. VALIEV, T.G. LANGDON, “Micro hardness and microstructural evolution in pure nickel during high-pressure torsion,” Scripta mater, Vol.44, Pages 2753-2758, 2001.
[18] G.H. CAO, A.M. RUSSELL, C.G. OERTEL, W. SKROTZKI, “Microstructural evolution of TiAl-based alloys deformed by high-pressure torsion,” Acta Materialia, Vol.98, Pages 103-112, 2015.
[19] M. ISIK, M. NIINOMI, K. CHO, M. NAKAI, H. LIU, H. YILMAZER, Z. HORITA, S. SATO, T. NARUSHIMA, “Microstructural evolution and mechanical properties of biomedical Co–Cr–Mo alloy subjected to high-pressure torsion,” Journal of the Mechanical Behavior of Biomedical Materials, Vol.59, Pages 226-235, 2016.
[20] N. NAKAYAMA, “Development of Functional Material Formed by Powder Metallurgy,” Journal of the Japen Society for the Technology Plasticity, Vol. 56 No. 651 Pages 270-274, 2015
[21] H. MIKI, “Dynamic Molding Process for Powder Material using Compression Shearing Method,” Hosokawa Powder Technology Foundation ANNUAL REPORT, No.24, 2016
[22] M. HORITA, N. NAKAYAMA, H. MIKI, T. MIYAZAKI, H. TAKEISHI, “Effect of Ball-Milling Time on Tensile Properties of Ti/Al Thin Plate Formed by Compression Shearing Method at Room Temperature,” Journal of the Japen Society for the Technology Plasticity, Vol 54 ,No.625, Pages 181-185, 2013
[23] 陳昱, “壁厚具硬度梯度之管材擠製模具設計,”碩士論文, 國立中山大學機械與機電工程學系, 高雄, 台灣,2014.
[24] 莊凱翔,“使用旋轉壓縮成形製作具有梯度微結構與硬度之鎂合金材料,”碩士論文, 國立中山大學機械與機電工程學系, 高雄, 台灣,2014.
[25] 釜田 浩, “電解擦光複合加工之特性解析與性能改善研究,”博士學位論文, 第8 章,京都大學, 1993
[26] Y. KUME, M. KOBASHI, N. KANETAKE, “Effect of Processing Temperature and Specimen Diameter on Grain Refinement with Compressive Torsion Processing,” Journal of the Japen Society for the Technology Plasticity, Vol 48 ,No.562, Pages 1007-1011,2007
[27] K. D. RALSTON, D. FABIJANIC, N. BIRBILIS, “Effect of grain size on corrosion of high purity aluminium,” Electrochimica Acta, Vol 56, Pages 1729–1736, 2011
[28] O. JILANI , N. NJAH , P. PONTHIAUX , “Transition from intergranular to pitting corrosion in fine grained aluminum processed by equal channel angular pressing,” Corrosion Science, Vol.87, Pages 259-264, 2014
[29] ASTM_E92-16, “Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials,”
[30] M. KAWASAKI,R. B. FIGUEIREDO, T. G. LANGDON, “An Investigation of Hardness Homogeneity Throughout Disks Processed by High-Pressure Torsion,” Acta Materialia, Vol. 59, Pages 308-316, 2011
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code