Responsive image
博碩士論文 etd-0721118-133114 詳細資訊
Title page for etd-0721118-133114
論文名稱
Title
對不同基材添加二氧化鈦奈米顆粒之光聚合全像材料光學性質量測
Measurement of optical properties of photopolymerizable holographic material by adding TiO2 nanoparticles to different matrices
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
91
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-06-22
繳交日期
Date of Submission
2018-08-21
關鍵字
Keywords
PVA、TEOS、改質奈米顆粒、奈米顆粒、丙烯醯胺、光學儲存材料
Optical storage materials, TEOS, Modified Nanoparticles, Nanoparticles, Acrylamine, PVA
統計
Statistics
本論文已被瀏覽 5635 次,被下載 0
The thesis/dissertation has been browsed 5635 times, has been downloaded 0 times.
中文摘要
本研究以無機基材以及有機基材之丙烯醯胺感光高分子加入奈米顆粒製備光學全像儲存材料。
無機基材以四乙氧基矽烷(TEOS)與矽烷偶合劑(γ-GPTMS)為前驅物,加入感光高分子單體丙烯醯胺(Acrylamide)與光起始劑(Irgacure 784) ,並加入奈米顆粒(TiO2)於溶膠凝膠反應的溶液中,製備光學儲存材料。有機基材以聚乙烯醇(PVA)為基材,加入感光高分子單體丙烯醯胺(Acrylamide)與光起始劑(Irgacure 784),並加入奈米顆粒(TiO2),製備光學儲存材料。
光學儲存材料經由兩道綠光(DPSS 532 nm)進行干涉,由能夠吸收特定波長能量的光起始劑吸收能量產生自由基,使感光高分子單體進行聚合反應後於材料內部進行濃度擴散與分布,並產生符合布拉格繞射定律的光柵。
本實驗改變基材、單體濃度、光起始劑濃度與加入奈米顆粒(改質與未改質)為實驗參數,探討實驗參數對繞射效率的影響。
添加未改質奈米顆粒可提升繞射效率,於無機基材中可縮短達最大繞射效率時間,但添加在有機基材中會增加達最大繞射效率時間,添加改質奈米顆粒於無機基材會降低繞射效率,但能加快達最大繞射效率之時間,添加於有機基材中可提升繞射效率(效果較未改質好),但單體量上升達一定程度,繞射效率開始下降,且達最大繞射效率時間較未添加奈米顆粒及添加未改質奈米顆粒短。
Abstract
In this study, an optical holographic image storage material was prepared by adding nanoparticle to an acrylamide photopolymer in organic matrix and inorganic matrix. The inorganic matrix was tetraethoxysilane (TEOS) and coupling agent (γ-GPTMS) as the precursor, and the photopolymer monomer Acrylamide (AA) and photoinitiator (Irgacure 784) were added and the nanoparticle (TiO2) were added to the sol-gel reaction solution to prepare an optical storage material. The organic substrate was made of polyvinyl alcohol (PVA) as a matrix, a photopolymer monomer Acrylamide(AA) and a photoinitiator (Irgacure 784) were added, and nanoparticle (TiO2) was added to prepare an optical storage material.
This experiment changed the substrate, monomer concentration, photoinitiator concentration and the addition of nanoparticle (modified and unmodified) as experimental parameters, and discussion the influence of experimental parameters on diffraction efficiency.
Adding unmodified nanoparticles can increase the diffraction efficiency, and can shorten the time of maximum diffraction efficiency in inorganic matrix, but adding in organic matrix will increase the time of maximum diffraction efficiency.
Adding modified nanoparticles to the inorganic matrix will reduce the diffraction efficiency, but it can accelerate the time up to the maximum diffraction efficiency. Adding modified nanoparticles to the organic matrix can improve the diffraction efficiency (the effect is better than unmodified), but the monomer As the amount of monomer rises to a certain degree, the diffraction efficiency begins to decrease.
目次 Table of Contents
論文審定書 i
誌謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 viii
表目錄 xi
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
第二章 原理與文獻回顧 3
2.1 全像術簡介 3
2.2 光學性質 5
2.2.1 繞射效率計算公式 5
2.2.2 穿透率 5
2.2.3 角度選擇性 6
2.3 全像儲存材料 7
2.3.1 鹵化銀材料(Silver halide emusiom) 7
2.3.2 重鉻酸鹽明膠(Dichromated gelation,DCG) 7
2.3.3 光折變材料(Photorefractives materials) 8
2.3.4 光致變色材料(Photochromic materials) 8
2.3.5 感光高分子(Photopolymer) 8
2.4 無機基材 9
2.4.1 有機金屬基材 10
2.4.2 有機-無機混合基材 11
2.4.3 有機-無機網狀基材 11
2.5 光聚合系統 12
2.5.1 單體 12
2.5.2 光起始劑 13
2.5.3 高折射率物質 13
2.6 光柵 14
2.6.1 薄全像 14
2.6.2 體積全像 15
2.7 溶膠 - 凝膠法 16
2.7.1 溶膠 - 凝膠法簡介 16
2.7.2 溶膠凝膠法的影響因素 17
2.8 文獻回顧 21
第三章 研究方法 23
3.1 實驗藥品 23
3.2 實驗流程 25
3.2.1 無機基材製程 25
3.2.2 有機基材製程 27
3.3 全像光學系統 29
3.3.1 光學系統使用儀器 30
3.4 試片代碼 30
3.5 實驗儀器及分析 32
3.5.1 光功率計 (Power Meter) 32
3.5.2 拉曼光譜儀 (Microscopes Raman Spectrometer , Raman) 32
3.5.3 傅立葉轉換紅外線光譜儀 (Fourier Transfer Infared Sprctrometer, FTIR) 32
3.5.4 原子力顯微鏡 (Atomic Force Microscopy, AFM) 32
第四章 結果與討論 33
4.1 不同參數對光學性質之影響 33
4.1.1 不同基材及改變單體添加量對繞射效率之影響 33
4.1.2 不同基材添加奈米顆粒對繞射效率之影響 39
4.1.3 不同基材添加改質奈米顆粒對繞射效率之影響 45
4.1.4 改變改質奈米顆粒添加量於不同基材中 50
4.2 拉曼光譜圖 (Raman)分析 53
4.3 傅立葉轉換紅外光光譜儀 (FTIR) 分析 54
4.4 原子力顯微鏡 (AFM)分析 56
第五章 結論 59
第六章 建議未來工作 61
參考文獻 62
附錄 66
A. S系列各試片之繞射效率圖 66
B. P系列各試片之繞射效率圖 67
C. ST系列各試片之繞射效率圖 69
D. PT系列各試片之繞射效率圖 71
E. ST-mo系列各試片之繞射效率圖 72
F. PT-mo系列各試片之繞射效率圖 74
G. ST20mo系列各試片之繞射效率圖 76
H. PT20mo系列各試片之繞射效率圖 77
參考文獻 References
[1] C.-Y. Chu, "Fabrication and Optical Property of Holographic Storage Materials with High Refractive Index Species," Master Thesis ,National Sun Yat-sen University, 2014.
[2] Y.-Y. Chuang, "Manufacturing Technique and Optical Property of
Holographic Storage Materials with cross-linking agent," Master Thesis ,National Sun Yat-sen University, 2016.
[3] W. S. Kim, Y.-C. Jeong, and J.-K. Park, "Nanoparticle-induced refractive index modulation of organic-inorganic hybrid photopolymer," Optics Express, vol. 14, no. 20 2006.
[4] D. Gabor, "A new microscopic principle," Nature, vol. 161, pp. 777-778, 1948.
[5] H. Kogelniik, "Coupled Wave Theory for Thick Hologram Gratings," The Bell System Technical Journal, vol. 48, pp. 2909-2947, 1969.
[6] G. J. Steckman, V. Shelkovnikov, V. B. T. Gerasimova, V. Shelkovnikov, V. Berezhnaya, and T. Gerasimova, "Holographic recording in a photopolymer by optically induced detachment of chromophores," Optics Letters, vol. 25, no. 9, pp. 607-609, 2000.
[7] S. Lee, Y.-C. Jeong, Y. Heo, S. I. Kim, Y.-S. Choi, and J.-K. Park, "Holographic photopolymers of organic/inorganic hybrid interpenetrating networks for reduced volume shrinkage," Journal of Materials Chemistry, vol. 19, no. 8, pp. 1105-1114, 2009.
[8] P. Hariharan, "Basics of Holography," pp. 50-59, 2002.
[9] W. R. Graver, J. W. Gladden, and J. W. Eastes, "Phase holograms formed by silver halide (sensitized) gelatin processing, Applied Optics," Applied Optics, vol. 19, no. 9, pp. 1529-1536, 1980.
[10] T. A. Shankoff, "Phase Holograms in Dichromated Gelatin," Applied Optics, vol. 7, no. 10, pp. 2101-2105, 1968.
[11] R. Changkakoti and S. V. Pappu, "Study on the pH dependence of diffraction efficiency of phase holograms in dye sensitized dichromated gelatin," Applied Optics, vol. 25, pp. 798-801, 1986.
[12] F. S. Chen, J. T. LaMacchia, and D. B. Fraser, "Holographic Storage in Lithium Niobate," Applied Physics Letters, vol. 13, no. 7, pp. 223-225, 1968.
[13] M. Irie, "Photochromism Memories and SwitchessIntroduction," Chem. Rev, vol. 100, pp. 1683-1683, 2000.
[14] H. Dürr and H. Bouas-Laurent, "Photochromism: Molecules and Systems: Molecules and Systems," Access Online via Elsevier, 2003.
[15] M. Serwadczak and S. Kucharski, "Photochromic Gratings in Sol-Gel Hybrid Materials Containing Cyanoazobenzene Chromophores," Journal of Sol-Gel Science and Technology, vol. 37, no. 1, pp. 57-62, 2006.
[16] A. Murciano, S. Blaya, L. Carretero, M. Ulibarrena, and A. Fimia, "Hologram multiplexing in a highly photosensitive photopolymerizable material in a sol-gel matrix," Applied Physics B, vol. 81, no. 2-3, pp. 167-169, 2005.
[17] M. L. Calvo and P. Cheben, "Photopolymerizable sol–gel nanocomposites for holographic recording," Journal of Optics A: Pure and Applied Optics, vol. 11, no. 2, 2009.
[18] A. T. Friberg and R. Dändliker, "Advances in information optics and photonics," SPIE Press, 2008.
[19] M. Miler et al., "A comparative review of silver halide photopolymerizable system and sol-gel holographic materials," presented at the Holography: Advances and Modern Trends, 2009.
[20] S. Blaya et al., "Optimal composition of an acrylamide andN,N′-methylenebisacrylamide holographic recording material," Journal of Modern Optics, vol. 45, no. 12, pp. 2573-2584, 1998.
[21] A. M. L. Carretero, S. Blaya, M. Ulibarrena, A. Fimia, "Acrylamide-N,N’-methylenebisacrylamide silica glass," Optics Express, vol. 12, pp. 1780-1787, 2004.
[22] A. Murciano, L. Carretero, S. Blaya, R. F. Madrigal, and A. Fimia, "Experimental study of multiplexed holographic gratings recorded in a photopolymerizable silica glass," Applied Physics B, vol. 83, no. 4, pp. 619-622, 2006.
[23] K. Curtis and D. Psaltis, "Characterization of the DuPont photopolymer for three-dimensional holographic storage," Applied Optics, vol. 33, pp. 5396-5399, 1994.
[24] S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, and A. Fimia, "New photopolymerizable holographic recording material based on polyvinylalcohol and 2-hydroxiethylmethacrylate (HEMA)," Applied Physics B: Lasers and Optics, vol. 74, no. 6, pp. 603-605, 2002.
[25] N. Hayashida, A. Kosuda, and J. Yoshinari, "A New Class of Photopolymer for Holographic Data Storage Media Based on Organometallic Matrix," Japanese Journal of Applied Physics, vol. 47, no. 7, pp. 5895-5899, 2008.
[26] N. Suzuki and Y. Tomita, "Silica nanoparticle dispersed methacrylate photopolymers with net diffraction efficiency near 100%," Applied Optics, vol. 43, pp. 2125-2129, 2004.
[27] Y. T. N. Suzuki, "Holographic scattering in SiO2 nanoparticle dispersed," Applied Optics, vol. 46, pp. 6809-6814, 2007.
[28] Y. Tomita and N. Suzuki, "Holographic manipulation of nanoparticle," Optics Letters, vol. 30, no. 8, pp. 839-841, 2005.
[29] M. Feuillade, C. Croutxé-Barghorn, L. Mager, C. Carré, and A. Fort, "Photopatterning of hybrid sol–gel glasses: generation of volume phase gratings under visible light," Chemical Physics Letters, vol. 398, no. 1-3, pp. 151-156, 2004.
[30] Y. M. Chang, S. C. Yoon, and M. Han, "Photopolymerization of aromatic acrylate containing phosphine oxide backbone and its application to holographic recording," Optical Materials, vol. 30, no. 4, pp. 662-668, 2007.
[31] M. C. Kuo, H. H. Chen, and J. Y. Li, "Preparation and Isothermal Crystallization Behavior of the iPP Polymer Filled by TiO2 Nanoparticles," Dept. of Polymer Materials, Kun Shan University, Yung Kang, Tainan, 2008.
[32] S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, "Photopolymerization model for holographic gratings formation in photopolymers," Applied Physics B, vol. 77, no. 6-7, pp. 639-662, 2003.
[33] P. C. Mehta and V. Rampal, "Lasers and holography," World Scientific, 1993.
[34] C. J. Brinker and G. W. Scherer, "Sol-gel science: the physics and chemistry of sol-gel processing," Access Online via Elsevier, 1990.
[35] H. D. Cogan, C. A. Setterstrolll, J. C. S. MIiner, L. A. Bryan, J. R. P. Holssz, and J. G. W. Pedlow, "Organic Silicon Compounds-ethyl silicate," Industrial & Engineering Chemistry, vol. 39, pp. 1364-1335, 1947.
[36] R. K. Iler and Wiley, "The chemistry of silica," New York, 1979.
[37] A. Soleimani Dorcheh and M. H. Abbasi, "Silica aerogel; synthesis, properties and characterization," Journal of Materials Processing Technology, vol. 199, no. 1-3, pp. 10-26, 2008.
[38] P. Cheben, T. Belenguer, A. Nu˜nez, F. d. Monte, and D. Levy, "Holographic diffraction gratings recording in organically modified silica gels," Optics Letters, vol. 21, no. 22, pp. 1857-1859, 1996.
[39] P. Cheben and M. a. L. Calvo, "A photopolymerizable glass with diffraction efficiency near 100% for holographic storage," Applied Physics Letters, vol. 78, no. 11, pp. 1490-1492, 2001.
[40] N. Suzuki, Y. Tomita, and T. Kojima, "Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films," Applied Physics Letters, vol. 81, no. 22, pp. 4121-4123, 2002.
[41] G. Ramos, A. A. lvarez-Herrero, T. Belenguer, F. d. Monte, and D. Levy, "Shrinkage control in a photopolymerizable hybrid solgel material for holographic recording," Applied Optics, vol. 43, no. 20, pp. 4018-4024, 2004.
[42] X. Xue et al., "Effect of nanoparticle diameter on the holographic properties of gold nanoparticle dispersed acrylate photopolymer films," Optik - International Journal for Light and Electron Optics, vol. 124, no. 24, pp. 6987-6990, 2013.
[43] Y.Hung, "Improving the Diffraction Efficiency of Photopolymerizable Silica by High Refraction Index Species and Monomer," Master Thesis, National Sun Yat-sen University, 2015.
[44] U. Balachandran and N. Eror, "Raman spectra of titanium dioxide," Journal of Solid State Chemistry, vol. 42, no. 3, pp. 276-282, 1982.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code