Responsive image
博碩士論文 etd-0721118-140642 詳細資訊
Title page for etd-0721118-140642
論文名稱
Title
利用中間區域塌陷之空芯光纖製作雙馬赫-桑德光纖感測器
Double-MZI fiber sensors formed by a central collapse on a hollow-core fiber
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
72
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-26
繳交日期
Date of Submission
2018-08-21
關鍵字
Keywords
Mach-Zehnder光纖干涉儀、光纖感測器、塌陷、空芯光纖、單模光纖
collapsed, Mach-Zehnder interferometer, single mode fiber, fiber sensor, hollow core fiber
統計
Statistics
本論文已被瀏覽 5652 次,被下載 1
The thesis/dissertation has been browsed 5652 times, has been downloaded 1 times.
中文摘要
Mach-Zehnder光纖干涉儀感測器具有體積小、靈敏度高、抗電磁干擾等優點,而利用塌陷熔接製作的Mach-Zehnder光纖干涉儀不但製作簡單且元件結構較為堅固,因此在近幾年來已有各式各樣的結構被發表。在本論文中,我們將空芯光纖塌陷熔接於兩段單模光纖之間形成單Mach-Zehnder光纖干涉儀,接著對空芯光纖中間區域進行放電塌陷使元件成為雙Mach-Zehnder光纖干涉儀。相較於單Mach-Zehnder光纖干涉儀,雙Mach-Zehnder光纖干涉儀輸出頻譜的干涉條紋有著更大的自由頻譜範圍與消光比,使雙Mach-Zehnder光纖干涉儀更加適合被應用在環境感測方面。
我們將製作出的雙Mach-Zehnder光纖干涉儀應用於感測環境折射率、環境溫度、軸向應變及推進距離等,並得出雙Mach-Zehnder光纖干涉儀對於折射率靈敏度為218.84 nm/RIU、溫度靈敏度為14.32 pm/℃、軸向應變靈敏度為5.143×10-4 dB/με、推進距離靈敏度為-0.214 dB/mm,而實驗結果也顯示出Mach-Zehnder光纖干涉儀在經過中間區域塌陷成為雙Mach-Zehnder光纖干涉儀後,其對於環境折射率及環境溫度變化的感測靈敏度皆會大幅提升,因此可以提高元件在環境感測方面的可量測範圍及準確度。
Abstract
Optical Mach-Zehnder interferometer (MZI) fiber sensors have several advantages, such as small size, high sensitivity, and immunity to electromagnetic interference. Several kinds of MZI-based fiber sensors formed by the collapse splicing have been proposed in recent year due to their simple fabrication process and strong structures. We can get a single-MZI-based fiber sensor by collapse splicing a section of HCF between two SMFs. The double-MZI-based fiber sensor we propose is fabricated by collapsed the middle region of the single-MZI-based fiber sensor by a suitable fusion parameter. Compared to the interference spectrum of single-MZI-based fiber sensors, double MZI-based fiber sensors have larger FSR and deeper extinction ratio.
The double-MZI-based fiber sensors we proposed have been applied to environment sensing. The experiment results show the sensitivities of refractive index, temperature, strain, and pushing distance of the double-MZI-based fiber sensor are 218.84 nm/RIU, 14.32 pm/℃, 5.143×10-4 dB/με, and -0.214 dB/mm, respectively. According to the experiment results, the double-MZI-based fiber sensor which fabricated by collapsed the middle region of the single-MZI-based fiber sensor has higher sensitivity in RI and temperature sensing. Otherwise, the double-MZI-based fiber sensor can also improve the measurement range and accuracy.
目次 Table of Contents
學位論文審定書 i
誌謝 ii
中文摘要 iii
Abstract v
目錄 vi
圖目錄 viii
表目錄 xii
第一章 緒論 1
1-1光纖的發展 1
1-2 光纖干涉儀 3
1-2.1 法布立-培若光纖干涉儀(Fabry-Pѐrot fiber interferometer) 4
1-2.2 邁克生光纖干涉儀(Michelson fiber interferometer) 7
1-2.3 馬赫-桑德光纖干涉儀(Mach-Zehnder fiber interferometer) 10
1-3研究動機 12
第二章 Mach-Zehnder光纖干涉儀 13
2-1 Mach-Zehnder光纖干涉儀 13
2-2 雙Mach-Zehnder光纖干涉儀 18
第三章 雙Mach-Zehnder光纖干涉儀的製作 21
3-1元件設計 22
3-2製作元件的材料 24
3-3元件製作方法 24
第四章 雙Mach-Zehnder光纖干涉儀的干涉特性 31
4-1元件量測架設 31
4-2元件中間區域塌陷前後之比較 33
4-3元件中間塌陷區域長度之比較 35
4-4結構不對稱對於元件之影響 37
4-2感測環境溫度變化 40
第五章 Mach-Zehnder光纖干涉儀的環境感測特性 41
5-1感測環境折射率變化 41
5-2感測環境溫度變化 46
5-3感測軸向應變 51
5-4感測推進距離之變化 54
第六章 結論 57
參考文獻 58
參考文獻 References
[1] K. C. Kao and G. A. Hockham, “Dielectric-fiber surface waveguides for optical frequencies,” Proc. IEE-London, vol. 113, pp. 1151-1158, 1966.
[2] C. Wu, Z. Y. Liu, A. P. Zhang, B. O. Guan, and H. Y. Tam, “In-line open-cavity Fabry-Pérot interferometer formed by C-shaped fiber fortemperature-insensitivive refractive index sensing,” Opt. Exp., vol. 22, pp. 21757-21766, 2014.
[3] Z. X. Liu, C. Y. Shen, Y. K. Xiao, J. Q. Gong, J. F. Wang, T. T. Lang, C. L. Zhao, C. Q. Huang, Y. X. Jin, X. Y. Dong, Y. Zhang, Z. G. Jing, W. Peng, and Y. Semenova, “ Liquid surface tension and refractive index sensor based on a tilted fiber Bragg grating,” J. Opt. Soc. Am. B Opt. Phys., vol. 35, pp. 1282-1287, 2018.
[4] R. Yang, Y.-S. Yu, Y. Xue, C. Chen, Q.-D. Chen, and H.-B. Sun, “Single S-tapered fiber Mach-Zehnder interferometers,” Opt. Exp., vol. 36, pp. 4482-4484, 2011.
[5] B. Q. Jiang, Z. Y. Bai, C. G. Wang, Y. H. Zhao, L. Zhang, and L. M. Zhou, “In-line Mach-Zehnder intereferometer with D-shaped fiber grating for temperature-discriminated directional curvature measurement,” J. Lightw. Technol., vol. 36, pp. 742-747, 2018.
[6] J. M. Corres, J. Bravo, F. J. Arregui, and I. R. Matias, “Unbalance and harmonics detection in induction motors using an optical fiber sensor,” IEEE Sens. J., vol. 6, pp. 605-612, 2006.
[7] Q. Z. Rong, X. G. Qiao, Y. Y. Du, D. G. Feng, R. H. Wang, Y. Ma, H. Sun, M. L. Hu, and Z. Y. Feng, “In-fiber quasi-Michelson interferometer with a core- cladding-mode fiber end-face mirror,” Appl. Opt., vol. 52, pp. 1411-1447, 2013.
[8] D. Wu, T. Zhu, M. Deng, D.-W. Duan, L.-L. Shi, J. Y, and Y.-J. Rao,“Refractive index sensing based on Mach-Zehnder interferometer formed by three cascaded single-mode fiber tapers,” Appl. Opt., vol. 50, pp. 1548-1533, 2011.
[9] J. Ma, W. Jin, H. L. Ho, and J. Y. Dai, “High-sensitivity fiber-tip pressure sensor with graphene diaphragm,” Opt. Lett., vol. 37, pp. 2493-2495, 2012.
[10] Y. F. Wu, Y. D. Zhang, J. Wu, and P. Yuan, “Temperature-insensitive fiber optic Fabry-Pérot interferometer based on special air cavity for transverse load and strain measurement,” Opt. Exp., vol. 25, pp. 9443-9448, 2017.
[11] D.-W. Duan, Y.-J. Rao, and T. Zhu, “High sensitivity gas refractometer based on all fiber open-cavity Fabry-Pérot interferometer formed by large lateral offset splicing,” J. Opt. Soc. Am. B Opt. Phys., vol. 29, pp. 912-915, 2012.
[12] Y.-J. Rao, M. Deng, D.-W. Duan, X.-C. Yang, T. Zhu, and G.-H. Cheng, “Micro Fabry-Pérot interferometers in silica fibers machined by femtosecond laser,” Opt. Exp., vol. 15, pp. 14123-14128, 2007.
[13] L. Yuan, T. Wei, Q. Han, H. Z. Wang, J. Huang, L. Jiang, and H. Xiao, “Fiber inline Michelson interferometer fabricated by a femtosecond laser,” Opt. Exp., vol. 37, pp. 4489-4491, 2012.
[14] L. B. Yuan, J. Yang, Z. H. Liu, and J. X. Sun, “In-fiber integrated Michelson interferometer,” Opt. Exp., vol. 31, pp. 2692-2694, 2006.
[15] L. Jiang, L. J. Zhao, S. M. Wang, J. P. Yang, and H. Xiao, “Femtosecond laser fabricated all-optical fiber sensors with ultrahigh refractive index sensitivity: modeling and experiment,” Opt. Exp., vol. 19, pp. 17591-17598, 2011.
[16] S. S. Zhang, W. G. Zhang, S. C. Gao, P. C. Geng, and X. L. Xue, “Fiber-optic bending vector sensor based on Mach-Zehnder interferometer exploiting lateral-offset and up-taper,” Opt. Lett., vol. 37, pp. 4480-4482, 2012.
[17] Z. Ludwig, “Ein neuer Interferenzrefraktor,” Zeitschrift für Instrumentenkunde, vol. 11, pp. 275–285, 1891.
[18] M. Ludwig, “Ueber einen Interferenzrefraktor,” Zeitschrift für Instrumentenkunde, vol. 12, pp. 89-93, 1892.
[19] J. Xu, H. H. Liu, F. F. Pang, L. Hong, Z. G. Ma, Z. W. Zhao, N. Chen, Z. Y. Chen, and T. Y. Wang, “Cascaded Mach-Zehnder interferometers in crystallized sapphire derived fiber for temperature insensitive filters,” Opt. Mat. Express., vol. 7, pp. 1406-1413, 2017.
[20] H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Exp., vol. 15, pp. 5711-5720, 2007.
[21] J. B. Liu, D. N. Wang, and L. Zhang, “Slightly tapered optical fiber with dual inner air-cavities for simultaneous refractive index and temperature measurement,” J. Lightw. Technol., vol. 34, pp. 4872-4876, 2016.
[22] Y. Li, L. Chen, E. Harris, and X. Y. Bao, “Double-pass in-line fiber taper Mach–Zehnder interferometer sensor,” IEEE Photon. Technol. Lett., vol. 22, pp. 1750–1752, 2010.
[23] L. M. Hu, C. C. Chan, X. Y. Dong, Y. P. Wang, P. Zu, W. C. Wong, W. W. Qian, and T. Li, “Photonic crystal fiber strain sensor based on modified Mach-Zehnder interferometer,” IEEE Photon. J., vol. 4, pp. 114-118, 2012.
[24] W. M. B. Yunus and A. B. Rahman, “Refractive index of solutions at high concentrations,” Appl. Opt., vol. 27, pp. 3341-3343, 1988.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code