Responsive image
博碩士論文 etd-0721118-141211 詳細資訊
Title page for etd-0721118-141211
論文名稱
Title
二維硒化銦場效電晶體遲滯現象之研究
Study on hysteresis in two-dimensional InSe field effect transistors
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
74
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-20
繳交日期
Date of Submission
2018-08-30
關鍵字
Keywords
二維材料、場效電晶體、遲滯現象、陷阱、硒化銦
Two-dimensional material, Indium selenide, Hysteresis, Field effect transistor, Traps
統計
Statistics
本論文已被瀏覽 5679 次,被下載 2
The thesis/dissertation has been browsed 5679 times, has been downloaded 2 times.
中文摘要
以二維材料硒化銦作為電流通道的場效電晶體具有很高的載子遷移率、開關電流比等良好電特性,然而在量測其場效特性時伴隨著程度不等的遲滯現象,導致硒化銦場效電晶體的諸多本質特性不穩定,例如臨限電壓值、載子遷移率等。因此研究是什麼因素導致遲滯現象的發生及陷阱充放電程度對遲滯大小造成的影響並設法去除遲滯現象是目前迫切需解決的問題。實驗結果顯示量測場效特性時的閘極掃描速度會影響遲滯的大小,以0.29 V/s的掃描速度量測到的遲滯大小約為30 V,單位面積陷阱捕獲的電荷數約為2×1012 cm-2;增加閘極掃描速度至0.75 V/s時的遲滯大小減小到7 V,被捕獲的電荷密度也減少至約7×1011 cm-2,經計算後陷阱捕獲電荷的時間常數為6.4 s,而量測時最大停留時間僅有3.5 s,因此閘極掃描速度越慢將使的陷阱捕獲越多電荷導致遲滯現象越明顯。不同的掃描範圍也會改變遲滯的大小,以±80 V的掃描範圍量測到的遲滯大小約27.7 V,被陷阱捕獲的電荷密度約為2.3×1012 cm-2;減小閘極掃描範圍至±10 V時的遲滯大小減小為0.6 V,而陷阱捕獲的電荷密度也減少至4.9×1010 cm-2,經量測後證實施加越大的閘極電壓將使陷阱捕獲越多的的電荷,因此越大的閘極掃描範圍遲滯現象越明顯。之後我們於不同環境下進行量測,結果顯示於真空環境及純氮氣環境中遲滯大小並無明顯差異,皆為7 V,之後置於大氣環境下遲滯大小增加至38 V遠大於前兩者,且此現象是可逆反應,置於真空環境兩天的時間後遲滯大小恢復為原來的7 V,因此推論導致遲滯現象的主要因素為表面吸附的水氣所致,而真空環境下少許的遲滯現象為二氧化矽表面缺陷所致,經計算此缺陷深度約為0.83 eV。我們針對導致遲滯現象的因素去進行改良,以無懸浮鍵的氮化硼隔絕二氧化矽表面的缺陷並於高真空環境下減少吸附的水氣後我們成功製出近乎無遲滯現象的場效電晶體。
Abstract
Field effect transistors (FETs) made by few-layered indium selenide (InSe) exhibit good electrical characteristics. However, hysteresis is often observed in InSe-FETs which can affect intrinsic electrical properties. Therefore, investigating the possible factors which influence the hysteresis of InSe-FETs and further reducing the hysteresis are the primary targets in this work. The sweep rate of gate-voltage was observed to affect the hysteresis. The magnitude of hysteresis was 30 V via the sweep rate of 0.29 V/s and the number of charges captured by traps per unit area was about 2×1012 cm-2. When the sweep rate increased to 0.75 V/s, the hysteresis reduced to 7 V, and the trapped charge density also reduced to approximately 7×1011 cm-2. The trapped time constant was about 6.4 s which is longer than the maximum stay time of the gate voltage. Therefore, the slower gate sweep rate may cause a more significant hysteresis. The magnitude of hysteresis was 30 V via the sweep range of ±80 V and the number of charges captured by traps per unit area was about 2.3×1012 cm-2. When the sweep range decreased to ±10 V, the hysteresis reduced to 0.6 V, and the trapped charge density also reduced to 4.9×1010 cm-2. The larger gate voltage may cause the traps to capture more charge, so the larger gate sweep range may cause more significant hysteresis. Both the hysteresis in the vacuum environment and nitrogen environment were 7 V, but the hysteresis increased to 38 V in the atmosphere. The phenomenon is reversible because the hysteresis may return to 7 V after two days in the vacuum environment. Therefore, we speculate that the adsorption of water is the main factor which leads to hysteresis. The slight hysteresis in the vacuum environment is caused by the surface defects of silicon dioxide (SiO2), and the defect depth is about 0.83 eV. We improved InSe-FETs by isolating the defects of silicon dioxide with dangling bond-free hexagonal boron nitride (h-BN) and reducing the adsorbed water in the high vacuum environment. Finally, we successfully fabricated hysteresis-free InSe-FETs.
目次 Table of Contents
論文審定書i
誌謝 ii
摘要 iii
Abstract iv
目錄 vi
圖目錄viii
表目錄xi
第一章 序論1
第一節 前言1
第二節 研究動機3
第二章 理論基礎5
第一節 場效電晶體及其運作原理5
第二節 二維硒化銦場效電晶體8
第三節 遲滯現象12
第四節 名詞解釋及參數定義17
第三章 儀器介紹及元件製程21
第一節 製程儀器22
第二節 量測儀器24
第三節 元件製程26
第四章 實驗結果與討論29
第一節 硒化銦場效電晶體之基本性質29
第二節 導致遲滯現象的因素34
第三節 閘極掃描速度對遲滯大小的影響 37
第四節 閘極掃描範圍對遲滯大小的影響 43
第五節 遲滯現象的物理機制及改善方法 49
第五章 結論59
第六章 參考文獻60
參考文獻 References
1. Novoselov, K.S., et al., Electric Field Effect in Atomically Thin Carbon Films. Science, 2004. 306(5696): p. 666-669.
2. Pop, E., et al., Thermal Conductance of an Individual Single-Wall Carbon Nanotube above Room Temperature. Nano Letters, 2006. 6(1): p. 96-100.
3. Nair, R.R., et al., Fine Structure Constant Defines Visual Transparency of Graphene. Science, 2008. 320(5881): p. 1308-1308.
4. The Nobel Prize in Physics 2010". Nobelprize.org. Nobel Media AB 2014. Web. 4 Jun 2018.
5. Kiew, S.F., et al., Assessing biocompatibility of graphene oxide-based nanocarriers: A review. Journal of Controlled Release, 2016. 226: p. 217-228.
6. Xia, F., et al., Two-dimensional material nanophotonics. Nature Photonics, 2014. 8: p. 899.
7. Mak, K.F., et al., Atomically thin MoS 2: a new direct-gap semiconductor. Physical review letters, 2010. 105(13): p. 136805.
8. Mudd, G., et al., The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystals. Vol. 6. 2016. 39619.
9. Kuc, A., N. Zibouche, and T. Heine, Influence of quantum confinement on the electronic structure of the transition metal sulfide $T$S${}_{2}$. Physical Review B, 2011. 83(24): p. 245213.
10. Bertolazzi, S., D. Krasnozhon, and A. Kis, Nonvolatile Memory Cells Based on MoS2/Graphene Heterostructures. ACS Nano, 2013. 7(4): p. 3246-3252.
11. Tamalampudi, S.R., et al., High Performance and Bendable Few-Layered InSe Photodetectors with Broad Spectral Response. Nano Letters, 2014. 14(5): p. 2800-2806.
12. Pospischil, A., M.M. Furchi, and T. Mueller, Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nature Nanotechnology, 2014. 9: p. 257.
13. Geim, A.K. and I.V. Grigorieva, Van der Waals heterostructures. Nature, 2013. 499(7459): p. 419.
14. Debbichi, L., O. Eriksson, and S. Lebègue, Two-Dimensional Indium Selenides Compounds: An Ab Initio Study. The Journal of Physical Chemistry Letters, 2015. 6(15): p. 3098-3103.
15. Feng, W., et al., Performance improvement of multilayer InSe transistors with optimized metal contacts. Physical Chemistry Chemical Physics, 2015. 17(5): p. 3653-3658.
16. Qasrawi, A.F., Fabrication of Al/MgO/C and C/MgO/InSe/C tunneling barriers for tunable negative resistance and negative capacitance applications. Materials Science and Engineering: B, 2013. 178(12): p. 851-856.
17. Lei, S., et al., Evolution of the Electronic Band Structure and Efficient Photo-Detection in Atomic Layers of InSe. ACS Nano, 2014. 8(2): p. 1263-1272.
18. Ho, P.-H., et al., High-Mobility InSe Transistors: The Role of Surface Oxides. ACS Nano, 2017. 11(7): p. 7362-7370.
19. Feng, W., et al., Back gated multilayer InSe transistors with enhanced carrier mobilities via the suppression of carrier scattering from a dielectric interface. Advanced Materials, 2014. 26(38): p. 6587-6593.
20. Lee, D., et al., Multibit MoS2 Photoelectronic Memory with Ultrahigh Sensitivity. Advanced Materials, 2016. 28(41): p. 9196-9202.
21. Niehenke, E.C. The evolution of low noise devices and amplifiers. in Microwave Symposium Digest (MTT), 2012 IEEE MTT-S International. 2012. IEEE.
22. 施敏 and 李明逵, 半導體元件物理與製作技術. 國立交通大學出版社 2013.
23. Michaelson, H.B., The work function of the elements and its periodicity. Journal of Applied Physics, 1977. 48(11): p. 4729-4733.
24. Late, D.J., et al., Hysteresis in single-layer MoS2 field effect transistors. ACS nano, 2012. 6(6): p. 5635-5641.
25. Lee, G.-H., et al., Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS nano, 2013. 7(9): p. 7931-7936.
26. Cho, K., et al., Electric Stress-Induced Threshold Voltage Instability of Multilayer MoS2 Field Effect Transistors. ACS Nano, 2013. 7(9): p. 7751-7758.
27. Chen, H., et al., Dramatic switching behavior in suspended MoS2 field-effect transistors. Semiconductor Science and Technology, 2018. 33(2): p. 024001.
28. Ortiz-Conde, A., et al., A review of recent MOSFET threshold voltage extraction methods. Microelectronics Reliability, 2002. 42(4-5): p. 583-596.
29. Cho, A.-J., et al., Multi-layer MoS2 FET with small hysteresis by using atomic layer deposition Al2O3 as gate insulator. ECS Solid State Letters, 2014. 3(10): p. Q67-Q69.
30. Park, Y., et al., Thermally activated trap charges responsible for hysteresis in multilayer MoS2 field-effect transistors. Applied Physics Letters, 2016. 108(8): p. 083102.
31. Du, Y., et al., ${ m MoS} _ {2} $ Field-Effect Transistors With Graphene/Metal Heterocontacts. IEEE Electron Device Letters, 2014. 35(5): p. 599-601.
32. Pu, J., et al., Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano letters, 2012. 12(8): p. 4013-4017.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code