Responsive image
博碩士論文 etd-0721118-152040 詳細資訊
Title page for etd-0721118-152040
論文名稱
Title
氧化石墨烯光柵/石墨烯微加熱器整合矽光子波導元件
Graphene oxide grating/graphene micro heater integrated silicon photonic device
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
86
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-08-15
繳交日期
Date of Submission
2018-08-21
關鍵字
Keywords
微加熱器、布拉格光柵、多波分工、圖案轉移技術、平坦化全像干涉系統
micro-heater, laser interference lithography, wavelength-division-multiplexing, Bragg grating, pattern transfer
統計
Statistics
本論文已被瀏覽 5653 次,被下載 1
The thesis/dissertation has been browsed 5653 times, has been downloaded 1 times.
中文摘要
本論文致力於改善平坦化全像干涉系統,並再加入適當的平行透鏡後,成功將發散光校正為平行光,大幅降低光場發散角,曝光週期差異自5.71 nm降低至1 nm以下。同時利用實驗室所開發之圖案轉移技術成功將兩吋光柵結構轉移至塑膠軟板以及製作出1.5 mm*1.5 mm2光柵玻璃結構,同時結合光柵玻璃結構於矽光子波導上作為局部性光柵應用,可作為布拉格光柵反射器或波導光柵耦合器。除此之外,使用石墨烯取代金屬導體,並結合氧化石墨烯光柵成功製作出可導電之光柵結構,結合前後氧化石墨烯與石墨烯特性不變,並成功將此複合式導電光柵薄膜應用在矽光子晶片上作為微加熱器,在元件應用上為了減少石墨烯對波導內部光場的吸收,使用模擬軟體Fimmwave 模擬不同距離下石墨烯所造成的損耗,並選用高度較高之材料(70 nm、160 nm)製作光柵結構增加石墨烯與波導間的距離來降低石墨烯吸收所造成的損耗(0.241dB/μm、0.084dB/μm)。並藉由施加電壓來對矽波導進行加熱,並使布拉格反射波長成功偏移,此導電光柵薄膜同時也能應用於液晶配向,相較於傳統配向膜能有更薄的元件厚度以及更高的光穿透度。元件應用上,除了上述部份,本論文成功將4種不同週期(332 nm、334 nm、336 nm、338 nm)的光柵結構利用疊加方式結合於單一波導上,並成功反射出四個布拉格反射波長(1520.78 nm、1523.7 nm、1526.4 nm、1528.76 nm),當疊加更多不同週期之光柵結構,在多波分工應用上能夠增加載波數量,可望減少元件面積。
Abstract
In this thesis, we firstly equip a 6-inch plano-convex lens in laser interference lithography system for light collimation. This leads to greatly reduced grating period variation of resultant grating structure from 5.71 nm to less than 1 nm over the entire 2-inch wafer. With this capability, we further transfer 2-inch gratings onto a flexible PET substrate as well as a 1.5x1.5 mm2 glass coupon. The resulting grating structures on a tiny glass coupon allows us to provide Bragg reflection function locally on silicon photonic waveguides. This can serve as a waveguide Bragg reflector or a surface grating coupler. In addition, we further combine pristine graphene sheet with grating structure made of transparent graphene oxide to achieve a conductive graphene oxide grating thin film. In this device the pristine graphene sheet serves as an on-chip micro-heater to tune the reflecting wavelength of hybrid waveguide Bragg reflector. In order to eliminate the propagation loss arise from the absorption of graphene, we utilize a thicker gratings (70 or 160 nm) to increase the distance between the silicon waveguide and graphene micro-heater. This leads to a reduced propagation loss of 0.241 dB/μm and 0.084 dB/μm, respectively. Lastly, we demonstrate the stacking of four grating layers with different periodicities atop a silicon strip waveguide, thus reflecting four Bragg wavelengths (1520.78 nm, 1523.7 nm, 1526.4 nm, 1528.76 nm) individually.
目次 Table of Contents
中文審定書 i
英文審定書 ii
致謝 iii
中文摘要 iv
Abstract v
目錄 vi
圖目錄 viii
表目錄 xii
第一章 緒論 1
1-1 前言 1
1-2 研究動機 2
第二章 微影製程與現有技術 13
2-1 全像術 13
2-2 現有圖形化技術與圖案轉移技術 17
2-2-1 現有圖形化技術 17
2-2-2 圖案轉移技術 19
2-3 石墨烯 22
2-4 氧化石墨烯合成技術 26
2-5 布拉格光柵理論 34
第三章 系統改良與實驗製程流程 37
3-1光柵週期均勻度改善 37
3-2複合式導電光柵薄膜 41
3-3大面積(2 inch)與小面積(1.5*1.5 mm2)氧化石墨烯轉移 49
第四章 應用於矽波導量測結果 53
4-1複合式導電光柵薄膜應用 53
4-2局部性光柵應用於矽波導上 61
4-3四層光柵於矽波導之應用 62
第五章 結論與未來工作 64
5-1結論 64
5-2未來工作 65
5-2-1降低半高寬 65
5-2-2 加熱效率提升 66
5-2-3 多層光柵層間支撐層 67
參考文獻 68
參考文獻 References
[1] Y. Hu et al., "All-in-one graphene fiber supercapacitor," Nanoscale, 10.1039/C4NR01220H vol. 6, no. 12, pp. 6448-6451, 2014.
[2] E. H. Anaraki et al., "Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide," Energy & Environmental Science, 10.1039/C6EE02390H vol. 9, no. 10, pp. 3128-3134, 2016.
[3] J. Capmany, D. Domenech, and P. Muñoz, "Silicon graphene photonic integrated circuits for microwave photonic applications," in 2014 16th International Conference on Transparent Optical Networks (ICTON), 2014, pp. 1-4.
[4] P. Blake et al., "Graphene-Based Liquid Crystal Device," Nano Letters, vol. 8, no. 6, pp. 1704-1708, 2008/06/01 2008.
[5] J. Capmany, D. Domenech, and P. Muñoz, "Silicon graphene Bragg gratings," Optics Express, vol. 22, no. 5, pp. 5283-5290, 2014/03/10 2014.
[6] M. Liu et al., "A graphene-based broadband optical modulator," Nature, vol. 474, p. 64, 05/08/online 2011.
[7] Z. Xiong, C. Liao, and X. Wang, "Reduced graphene oxide diffraction gratings from duplication of photoinduced azo polymer surface-relief-gratings through soft-lithography," Journal of Materials Chemistry C, 10.1039/C5TC00335K vol. 3, no. 24, pp. 6224-6231, 2015.
[8] W. Xiong et al., "Direct writing of graphene patterns on insulating substrates under ambient conditions," Scientific Reports, Article vol. 4, p. 4892, 05/08/online 2014.
[9] H. B. Jiang et al., Bioinspired Fabrication of Superhydrophobic Graphene Films by Two-Beam Laser Interference. 2014.
[10] J. Ding, K. Du, I. Wathuthanthri, C.-H. Choi, F. T. Fisher, and E.-H. Yang, "Transfer patterning of large-area graphene nanomesh via holographic lithography and plasma etching," Journal of Vacuum Science & Technology B, vol. 32, no. 6, p. 06FF01, 2014/11/01 2014.
[11] M.-A. Kang et al., "Fabrication of flexible optoelectronic devices based on MoS2/graphene hybrid patterns by a soft lithographic patterning method," Carbon, vol. 116, pp. 167-173, 2017/05/01/ 2017.
[12] https://www.photond.com/products/fimmwave.htm.
[13] X. He, M. Xu, X. Zhang, and H. Zhang, "A tutorial introduction to graphene-microfiber waveguide and its applications," Frontiers of Optoelectronics, journal article vol. 9, no. 4, pp. 535-543, December 01 2016.
[14] H. Li, Y. Anugrah, S. J. Koester, and M. Li, "Optical absorption in graphene integrated on silicon waveguides," Applied Physics Letters, vol. 101, no. 11, p. 111110, 2012.
[15] Y. J. Hung. et al., "Narrowband silicon waveguide Bragg reflector achieved by highly ordered graphene oxide gratings," Optics Letters, vol. 42, no. 22, pp. 4768-4771, 2017/11/15 2017.
[16] https://refractiveindex.info/.
[17] L. Yu, Y. Yin, Y. Shi, D. Dai, and S. He, "Thermally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters," Optica, vol. 3, no. 2, pp. 159-166, 2016/02/20 2016.
[18] R. F. W. Pease, "Electron beam lithography," Contemporary Physics, vol. 22, no. 3, pp. 265-290, 1981/05/01 1981.
[19] F. Watt, A. A. Bettiol, J. A. Van Kan, E. J. Teo, and M. B. H. Breese, "ION BEAM LITHOGRAPHY AND NANOFABRICATION: A REVIEW," International Journal of Nanoscience, vol. 04, no. 03, pp. 269-286, 2005/06/01 2005.
[20] H. W. a. L.Abelmann, "Laser interference lithography," Nova Science, pp. 133-148, 2011.
[21] Y. Xia and G. M. Whitesides, "SOFT LITHOGRAPHY," Annual Review of Materials Science, vol. 28, no. 1, pp. 153-184, 1998/08/01 1998.
[22] D. S. Hobbs, B. D. McLeod, A. F. Kelsey, M. A. Leclerc, and E. Sabatino, "Automated-interference-lithography-based systems for generation of submicron-feature size patterns," in Symposium on Micromachining and Microfabrication, 1999, vol. 3879, p. 12: SPIE.
[23] Y. J. Hung, H.-J. Chang, P.-C. Chang, J.-J. Lin, and T.-C. Kao, "Employing refractive beam shaping in a Lloyd's interference lithography system for uniform periodic nanostructure formation," Journal of Vacuum Science & Technology B, vol. 35, no. 3, p. 030601, 2017/05/01 2017.
[24] Y. Hung, Jr., P.-C. Chang, Y.-N. Lin, and J.-J. Lin, "Compact mirror-tunable laser interference system for wafer-scale patterning of grating structures with flexible periodicity," Journal of Vacuum Science & Technology B, vol. 34, no. 4, p. 040609, 2016/07/01 2016.
[25] C.-H. Chen et al., "Effective Synthesis of Highly Oxidized Graphene Oxide That Enables Wafer-scale Nanopatterning: Preformed Acidic Oxidizing Medium Approach," Scientific Reports, vol. 7, no. 1, p. 3908, 2017/06/20 2017.
[26] C.-T. Wang, P.-C. Chang, J. J. Lin, M. C. Tai, Y. Hung, Jr., and T.-H. Lin, "Full-color reflector using vertically stacked liquid crystal guided-mode resonators," Applied Optics, vol. 56, no. 14, pp. 4219-4223, 2017/05/10 2017.
[27] J.-J. Lin et al., "The Implementation of Thin Graphene Oxide Grating on a Flexible PET Substrate," OPTIC, 2016.
[28] L. Li et al., "Nanofabrication on unconventional substrates using transferred hard masks," Scientific Reports, Article vol. 5, p. 7802, 01/15/online 2015.
[29] N. Ye et al., "High-alignment-accuracy transfer printing of passive silicon waveguide structures," Optics Express, vol. 26, no. 2, pp. 2023-2032, 2018/01/22 2018.
[30] G. A. Salvatore et al., "Fabrication and Transfer of Flexible Few-Layers MoS2 Thin Film Transistors to Any Arbitrary Substrate," ACS Nano, vol. 7, no. 10, pp. 8809-8815, 2013/10/22 2013.
[31] https://zh.wikipedia.org/wiki/%E7%94%B5%E9%98%BB%E7%8E%87.
[32] C.-Y. Su, "石墨烯量產技術與產業應用," 光連雙月刊, vol. no.108, 2013.11 2013.
[33] http://cmnst.ncku.edu.tw/files/14-1023-150985,r1924-1.php?Lang=zh-tw.
[34] C.-C. Kuo and C.-H. Chen, "Graphene thickness-controlled photocatalysis and surface enhanced Raman scattering," Nanoscale, 10.1039/C4NR03877K vol. 6, no. 21, pp. 12805-12813, 2014.
[35] A. C. Ferrari et al., "Raman Spectrum of Graphene and Graphene Layers," Physical Review Letters, vol. 97, no. 18, p. 187401, 10/30/ 2006.
[36] A. Pramanik, S. R. Chavva, Z. Fan, S. S. Sinha, B. P. V. Nellore, and P. C. Ray, "Extremely High Two-Photon Absorbing Graphene Oxide for Imaging of Tumor Cells in the Second Biological Window," The Journal of Physical Chemistry Letters, vol. 5, no. 12, pp. 2150-2154, 2014/06/19 2014.
[37] S. Yavuz, C. Kuru, D. Choi, A. Kargar, S. Jin, and P. R. Bandaru, "Graphene oxide as a p-dopant and an anti-reflection coating layer, in graphene/silicon solar cells," Nanoscale, 10.1039/C5NR09143H vol. 8, no. 12, pp. 6473-6478, 2016.
[38] J. Li, X. Zeng, T. Ren, and E. van der Heide, "The Preparation of Graphene Oxide and Its Derivatives and Their Application in Bio-Tribological Systems," Lubricants, vol. 2, no. 3, 2014.
[39] B. C. Brodie, "On the Atomic Weight of Graphite," Philosophical Transactions of the Royal Society of London, vol. 149, pp. 249-259, 1859.
[40] N. I. Kovtyukhova et al., "Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations," Chemistry of Materials, vol. 11, no. 3, pp. 771-778, 1999/03/01 1999.
[41] D. C. Marcano et al., "Improved Synthesis of Graphene Oxide," ACS Nano, vol. 4, no. 8, pp. 4806-4814, 2010/08/24 2010.
[42] P. Ramesh, S. Bhagyalakshmi, and S. Sampath, "Preparation and physicochemical and electrochemical characterization of exfoliated graphite oxide," Journal of Colloid and Interface Science, vol. 274, no. 1, pp. 95-102, 2004/06/01/ 2004.
[43] F. T. Johra, J.-W. Lee, and W.-G. Jung, "Facile and safe graphene preparation on solution based platform," Journal of Industrial and Engineering Chemistry, vol. 20, no. 5, pp. 2883-2887, 2014/09/25/ 2014.
[44] Lukas Chrostowski and Krzysztof Iniewski, "High-Speed Photonics Interconnects," CRC Press, 2013.
[45] https://www.smtnet.com/news/index.cfm?fuseaction=view_news& company id = 51222& news_id = 8602.
[46] Y. J. Hung, C. J. Wu, T. H. Chen, T. H. Yen, and Y. C. Liang, "Superior Temperature-Sensing Performance in Cladding-Modulated Si Waveguide Gratings," Journal of Lightwave Technology, vol. 34, no. 18, pp. 4329-4335, 2016.
[47] https://www.ic-intracom.bg/blog/cwdm - % D0 % BC % D1 % 80 % D0 % B5 % D0 % B6 % D0 % B8/.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code