Responsive image
博碩士論文 etd-0722104-143256 詳細資訊
Title page for etd-0722104-143256
論文名稱
Title
無壓力燒結LiMn2O4尖晶石之微結構分析
A microstructure analysis of pressureless sintered LiMn2O4 spinel
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
129
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-06-30
繳交日期
Date of Submission
2004-07-22
關鍵字
Keywords
差排、尖晶石、LiMn2O4、雙晶
LiMn2O4, dislocation, twin, spinel
統計
Statistics
本論文已被瀏覽 5689 次,被下載 5951
The thesis/dissertation has been browsed 5689 times, has been downloaded 5951 times.
中文摘要
本實驗以1莫耳Li2CO3與4莫耳MnO2的比例,利用固態反應法在800 oC下先合成製得具尖晶石(spinel)結構的LiMn2O4粉體,再經過1300 oC燒結(sintering)後而形成的LiMn2O4燒結塊,且在冷卻過程之中,伴隨著相變化(Phase transformation)以及在整個燒結塊之中的計量比(stoichiometric)不均勻;經過X光繞射(X-ray diffraction, XRD)的分析,發現經過燒結後的LiMn2O4燒結塊會有LiMnO2以及Mn3O4等的第二相產生,且是屬於缺Li的Li1-xMn2O4相,晶格參數也會因為John-Teller效應而使結構產生扭曲;而在電子顯微鏡的觀察中,發現試片具有平板狀的晶粒以及大量的缺陷,例如雙晶(twin)、差排(dislocation)以及疊差(stacking fault)等;在TEM分析中,LiMn2O4燒結試片中常可觀察到具有平板狀晶域(lamellae domain),而且雙晶(twin)結構是屬於tetragonal相的reflection twinning,差排(dislocation)部分,純的edge dislocation的滑移系統為 <110>{110},而45o的混合差排則是在 <100>{100}上。
Abstract
The spinel structure of LiMn2O4 powders react with the 1 mole Li2CO3 and 4 mole MnO2 powders by solid-state reaction at 800 oC, and then sintered at 1300 oC to become ceramics specimen. There are accompany phase transformation and non-stoichiometric composition during the cooling process. In X-ray diffraction analysis, the sintered specimen contains principal Li-deficiency Li1-XMn2O4 composition and minor of second phases LiMnO2 and Mn3O4. Lattice parameters also distorted by John-Teller effect. In electron microscopy observation, there are lamellae grains and defects in the specimen, such as twins, dislocations and stacking faults. In TEM analysis, tetragonal-LiMn2O4 structure has lamellae domains, and reflection twinning. However, this study for cubic-LiMn2O4 structure found that edge dislocations with Burger vector of 1/2<110> slip on {110} plane, and mixed(45o) dislocation with Burger vector of 1/2<100> slip on {100} plane.
目次 Table of Contents
目錄(Contents)

摘要(Abstract)

目錄(Contents)

圖表目錄(List of Figures and Tables)

第1章 簡介(Introduction) ……………………………………1

第2章 文獻回顧(Literature Review) ………………………3
2.1 尖晶石(Spinel)結構 …………………………………3
2.2 LiMn2O4尖晶石結構 …………………………………5
2.3 Li-Mn-O化合物 ………………………………………7
2.4 LiMn2O4尖晶石之Jahn-Teller效應 ………………8
2.5尖晶石結構的變形機制 ………………………………10
2.6雙晶(Twin)結構 ………………………………………11
2.7缺陷化學 ………………………………………………12
2.8穿透式電子顯微鏡(TEM)理論與技術 ………………15

第3章 實驗步驟(Experimental Procedure) ………………36
3.1 實驗藥品 ……………………………………………36
3.2 LiMn2O4粉體製備 ……………………………………37
3.3 LiMn2O4燒結塊製備 …………………………………38
3.4 密度測量 ……………………………………………39
3.5 X光繞射分析 …………………………………………40
3.6 微結構觀察 ……………………………………………41
3.6.1 掃描式電子顯微鏡(SEM) ……………………41
3.6.2 穿透式電子顯微鏡(TEM) ……………………42

第4章 實驗結果(Experimental Results) ……………………45
4.1 X光繞射分析 …………………………………………45
4.1.1 LiMn2O4粉體之X光繞射分析 ………………45
4.1.2 LiMn2O4燒結塊之X光繞射分析 ……………46
4.1.3 晶格常數與晶格參數的計算 …………………47
4.2 微結構觀察 …………………………………………48
4.2.1 SEM觀察 ………………………………………48
4.2.2 TEM觀察(Ⅰ)LiMn2O4粉體顆粒 ……………51
4.2.3 TEM觀察(Ⅱ)平板狀晶粒 ……………………51
4.2.4 TEM觀察(Ⅲ) Twin domain …………………53
4.2.5 TEM觀察(Ⅳ)Growth twin ……………………53
4.2.6 TEM觀察(Ⅴ)Dislocations ……………………54

第5章 結果討論(Discussion of Results) …………………84
5.1 X光繞射分析 …………………………………………84
5.1.1 LiMn2O4粉體 …………………………………84
5.1.2 LiMn2O4燒結塊 ………………………………87
5.2 SEM觀察 ……………………………………………89
5.3 TEM觀察(Ⅰ)Twin …………………………………91
5.4 TEM觀察(Ⅱ)Dislocation …………………………92


第6章 結論(Conclusions) ……………………………………114

第7章 未來工作(Future work) ………………………………115


參考資料(Reference) ……………………………………………116

附錄(Appendices)
附錄-1本實驗對照之JCPDs卡 ………………………………120
附錄-2 Lattice constant measurement ………………………122
附錄-3 LiMn2O4尖晶石結構理論密度計算 …………………123
附錄-4 LiMn2O4尖晶石結構因子(structure factor)計算 ……124
附錄-5 LiMn2O4尖晶石結構之繞射圖 ……………………126
附錄-6 LiMn2O4在[001]方向之立體投影圖 ………………128
附錄-7 Kikuchi map and selected-area diffraction patterns (SADP) for cubic LiMn2O4 spinel ……………………………129
參考文獻 References
參考資料(Reference)
[1] M. H. Loretto, R. E. Smallman, “Defect Analysis in Electron Microscopy”, John Wiley and Sons, London (1975).
[2] W. H. Bragg, "The Structure of the Spinel Group of Crystals," Philos. Mag., 30 [176] 305-15 (1915).
[3] S. Nishikawa, "Structure of Some Crystals of the Spinel Group," Proc. Math. Phys. Soc. Tokyo, 8, 199-209 (1915).
[4] T. Hahn, “International Tables for Crystallography, vol. A. space-group symmetry”, D. Reidel Pub. Co., Boston, USA, 2nd rev. ed. (1988).
[5] L. Hwang, A. H. Heuer, T. E. Mitchell, “On the space group of MgAl2O4 spinel”, Phil. Mag., 28, 241-43 (1973).
[6] E. J. Samuelsen, O. Steinsvoll, “On the space group of spinel”, J. Phys. C : Solid State Phys., 8, L427-L429 (1975).
[7] K. D. Rouse, M. W. Thomas, B. T. M. Willis, “Space group of the spinel structure : A neutron diffraction study of MgAl2O4”, J. Phys. C : Solid State Phys., 9, L231-L233 (1976).
[8] R. K. Mishra, G. Thomas, “Structure phase transition in the spinel MgAl2O4”, Acta Cryst. Acta Cryst., A33, 678 (1977).
[9] M. Tokonami, H. Horiuchi, “On the Space Group of Spinel, MgAl2O4”, Acta Cryst., A36, 122-126 (1980).
[10] H. W. Jaffe, “Introduction to Crystal Chemistry”, Student ed., Press Syndicate of the University of Cambridge (1988).
[11] W. D. Kingery, “Introduction to Ceramics”, John Wiley and Sons., 2nd edition (1976).
[12] Y. M. Chiang, D. P. Birnie, W. D. Kingery, “Physical Ceramics”, John Wiley & Sons, Inc., New York, USA (1997).
[13] T. Hahn, “International Tables for Crystallography, vol. A. space-group symmetry,” D. Reidel Pub. Co., Boston, USA, ed. 2nd rev. ed. (1988).
[14] K. E. Sickafus, John M. Wills, Norman W. Grimes, “Structure of Spinel”, J. Am. Ceram. Soc., 82 3272-92 (1999).
[15] R. D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides”, Acta. Cryst., A32, 751-67 ( 1976).
[16] R. J. Hill, J. R. Craig, G. V. Gibbs, “Systematices of the Spinel Type”, Phys. Chem. Minerals, 4, 317-339 (1979).
[17] J. M. Paulsen, J. R. Dahn, “Phase Diagram of Li-Mn-O Spinel in Air”, Chem. Mater., 11 [11] 3065-79 (1999).
[18] Y. Shimakawa, T. Numata, J. Tabuchi, “Verwey-Type Transition and Magnetic Properties of the LiMn2O4 Spinel”, Solid State Chemistry, 131, 138-143 (1997).
[19] M. R. Huang, “Structural Modifications and Capacity Fading of LiMn2O4 Cathode during Charge-Discharge of Secondary Lithium Ion Batteries”, Materials Science and Engineering National of Sun Yan-Sen University, Ph.D. thesis (2003).
[20] T. W. Graham Solomons, “Fundamentals of Organic Chemistry”, University of South Florida, New York (1997).
[21] J. B. Goodenough, “Jahn-Teller Phenomena in Solids”, Annu. Rev. Mater. Sci., 28, 1-27 (1998).
[22] A. Yamada, “Lattice Instability in Li(LixMn2-x)O4”, J. Solid State Chem., 122, 160-165 (1996).
[23] A. Tamada, M. Tanaka, “John-Teller Structural Phase Transition about 280K in LiMn2O4”, Materials Research Bulletin, 30, 715-721 (1995).
[24] A. Koiwai, J. Sugiyama, T. Hioki, S. Noda, “A Li nuclear magnetic resonance study on spinel LiMn2O4-&auml;”, J. Power Sources, 68, 637-640 (1996).
[25] M. Tabuchi, C. Masquelier, H. Kobayashi, R. Kanno, Y. Kobayashi, T. Akai, Y. Maki, H. Kageyama, O. Nakamura, “Characterization of Li1-&auml;Mn2-2&auml;O4 defect spinel materials by their phase transition, magnetic and electrochemical properties”, J. of Power Sources, 68, 623-628 (1996).
[26] Y. Shao-Horn, S. A. Hackney, A. J. Kahaian, K. D. Kepler, E. Skinner, “Structure fatigue in spinel electrodes in Li/Lix[Mn2]O4 cells”, J. Power Sources, 81-82, 496-499 (1999).
[27] J. Hornstra, “Dislocations, Stacking Faults and Twins in the Spinel Structure”, J. Phys. Chem. Solids, 15 [3-4], 311-23 (1960).
[28] T. E. Mitchell, L. Hwang, A. H. Heuer, “Deformation in Spinel”, J. Materials Science, 11, 264-272 (1976).
[29] T. E. Mitchell, “Dislocation and Mechanical Properties of MgO-Al2O3 Spinel Single Crystals”, J. Am. Ceram. Soc., 12, 3305-16 (1999).
[30] T. E. Mitchell, K. P. D. Lagerlof, A. H. Heuer, “Dislocations in ceramics”, Materials Science and Technology, 1, 944-949 (1985).
[31] T. E. Mitchell, W. T. Donlon, K. P.D. Lagerlof, A. H. Heuer, “Structure of Dislocation in Oxide”, Materials Science Research, Deformation of Ceramic Materials Ⅱ, R. E. Tressler, R. C. Bradt, 18, 125-139 (1984).
[32] L. Hwang, A. H. Heuer, T. E. Mitchell, “Slip systems in Stoichiometric MgAl2O4 Spinel”, pp. 257-70 in Deformation of ceramic materials. Edited by R.C. Bradt and R. E. Tressler. Plenum, New York(1975).
[33] T. E. Mitchell, “Application of Transmission Electron Microscopy to the Study of Deformation in Ceramic Oxides”, J. Am. Ceram. Soc, 62, 254-267 (1979).
[34] W. T. Donlon, T. E. Mitchell, A. H. Heuer, “Climb dissociation of network dislocations in non-stoichiometric Mg-Al spinel”, Phil. Mag. A, 40, 351-366 (1979).
[35] R. K. Mishra, G. Thomas, “Surface Energy of Spinel”, J. Appli. phys., 48 [11] 1576-4580 (1977).
[36] J. D. Dana, “The 22nd Edition of the Manual of Mineral Science”, John Wiley & Sons, Inc., C. Klein, New York (2002).
[37] B. A. Bilby, A. G. Crocker, “The theory of the crystallography of deformation twinning”, Proceedings of the Royal of London. Series A, 288, No. 1413, 240-255 (1965).
[38] C. Boulesteix, J. V. Landuyt, S. Amelinckx, “Identification of Rotation and Reflection Twin by Diffraction and Contrast Experiments in the Electron Microscope”, Phys. Stat. Sol. (A), 33, 595-606 (1976).
[39] C. J. Ting, “A Study of the Sinyering of Magnesium-Aluminate Spinel”, Materials Science and EngineeringNational of Sun Yan-Sen University, Ph.D. thesis (1997).
[40] P. E. Champness, “Electron Diffraction in the Transmission Electron Microscope”, Department of Earth Sciences, University of Manchester, Manchester, UK (2001).
[41] D. B. Williams, C. B. Carter, “Transmission electron microscopy”, Plenum Press, New York and London (1996).
[42] D. J. H. Cockayne, “The weak-beam method of electron microscopy”, Diffraction and imaging techniques in materials science, vol. 1: electron microscopy, North-Holland, 153-183 (1978).
[43] M. H. Loretto, R. E. Smallman, “Defect Analysis in Electron Microscopy”, John Wiley and Sons, London (1975).
[44] J. S. Reed, “Principles of Ceramics Processing”, 2nd edition, J Wiley, New York, (1995).
[45] ASTM, "Standard test method for water absorption, bulk density, apparent porosity and apparent speific gravity for fired whiteware products," Annual book of ASTM standards, 15.02, 112-113 (1990).
[46] J. M. Tarascon, W. R. McKinnon, F. Coowar, T. N. Bowmer, G. Amatucci, D. Guyomard, “Synthesis Conditions and Oxygen Stoichiometry Effects on Li Insertion into the Spinel LiMn2O4”, J. Electrochem. Soc., 141[6] 1421-1431 (1994).
[47] B. D. Cullity, ” Elements of X-Ray Diffraction”, Addison-Wesley, New York, 2nd ed. (1994).
[48] D. C. Palmer, A. Putnis, E. K. H. Salje, “Twinning in Tetragonal Leucite”, Phys. Chem. Minerals, 16, 298-303 (1988).
[49] A. H. Heuer, “Alloy design in partially stabilized zirconia”, Advances in ceramics vol. 3, “Science and Technology of Zirconia”, A. H. Heuer, L. W. Hobbs, American Ceramics Society, 98-115 (1981).
[50] A. H. Heuer, “Martensite theory and twinning in composite zirconia ceramics”, Advances in ceramics vol. 3, “Science and Technology of Zirconia”, A. H. Heuer, L. W. Hobbs, American Ceramics Society, 168-183 (1981).
[51] J. W. Edington, “Pracital Electron Microscopy in Materials Science”, N. V. Philips’ Gloeilampenfabrieken, Eindhoven (1976).
[52] M. M. Thackeray, M. F. Mansuetto, D. W. Dees, D. R. Vissers, “The Thermal Stability of Lithium-Manganese-Oxide Spinel Phases”, Mat. Res. Bull., 31, [2], 133-140 (1996).
[53] J. M. Tarascon, W. R. McKinnon, F. Coowar, T. N. Bowmer, G. Amatucci, D. Guyomard, “Synthesis Conditions and Oxygen Stoichiometry Effects on Li Insertion into the Spinel LiMn2O4”, J. Electrochem. Soc., 141, [6], 1421-1431 (1994).
[54] A. Yamada, K. Miura, K. Hinokuma, M. Tanaka, “Synthesis and Structural Aspects of LiMn2O4±&auml; as a Cathode for Rechargeable Lithium Batterie”, J. Elrctrochem. Soc., 142, [7], 2149-2156 (1995).
[55] Y. Shao-Horn, S. A. Hackney, A. J. Kahaian, K. D. Kepler, E. Skinner, “Structure fatigue in spinel electrodes in Li/Lix[Mn2]O4 cells”, Journal of Power Sources, vol. 81-82, 496-499 (1999).
[56] D. C. Palmer, A. Putnis, E. K. H. Salje, “Twinning in Tetragonal Leucite”, Phys. Chem. Minerals, 16, 298-303 (1988).
[57] C. Boulesteix, J. V. Landuyt, S. Amelinckx, “Identification of Rotation and Reflection Twin by Diffraction and Contrast Experiments in the Electron Microscope”, Phys. Stat. Sol. (A), 33, 595-606 (1976).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code