Responsive image
博碩士論文 etd-0722105-141349 詳細資訊
Title page for etd-0722105-141349
論文名稱
Title
以摩擦攪拌製程合成高強度Al-Cu-Ti 合金
Fabrication of High Strength Al-Cu-Ti Alloys by Friction Stir Processing
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
74
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-07-11
繳交日期
Date of Submission
2005-07-22
關鍵字
Keywords
奈米細晶粒、摩擦攪拌製程、高強度鋁合金
Friction Stir Processing(FSP), High strength aluminum alloys, nanocrystal
統計
Statistics
本論文已被瀏覽 5617 次,被下載 0
The thesis/dissertation has been browsed 5617 times, has been downloaded 0 times.
中文摘要
本研究主要目的在於利用摩擦攪拌製程(Friction Stir Processing,
FSP) 製造高強度Al-Cu-Ti 合金, 成分包括Al20Cu15Ti 、
Al10Cu10Ti、Al10Cu5Ti、Al5Cu5Ti。從研究結果可看出,若選用鋁
會完全反應為介金屬化合物之成分(如Al20Cu15Ti)做FSP 處理,可得
到很高的硬度(約655 Hv),但加工相對來講也很困難,無法得到
完全緻密的塊材。若選用銅、鈦均小於10 at.% 的成分組成
(Al10Cu10Ti、Al10Cu5Ti、Al5Cu5Ti)做FSP 處理,可製成完全緻
密之塊材。其主要強化相為Al2Cu 以及Al3Ti 之微小顆粒,顆粒大小
約20-80 nm,並均勻分佈在鋁基質之中。這些由奈米顆粒強化的
Al-Cu-Ti 合金,依Cu、Ti 含量不同,硬度可以達到120-290Hv,降
服強度可達443-895MPa。
Abstract
None
目次 Table of Contents
I
第一章前言...............................................................................................1
第二章文獻回顧......................................................................................4
2-1 摩擦攪拌銲接(Friction Stir Welding) ............................................... 4
2-1-1 摩擦攪拌銲接簡介.............................................................. 4
2-2 摩擦攪拌製程(Friction Stir Processing, FSP)................................... 9
2-3 高強度細晶鋁材料的設計.............................................................. 10
第三章實驗方法....................................................................................25
3-1 材料…. ............................................................................................. 25
3-2 試棒製作.......................................................................................... 25
3-2-1 粉末混合............................................................................. 25
3-2-2 粉末冷壓成形..................................................................... 25
3-2-3 燒結...................................................................................... 25
3-3 摩擦攪拌製程.................................................................................. 26
3-3-1 摩擦攪拌製程的參數設定................................................. 26
3-4 顯微組織分析.................................................................................. 26
3-4-1 金相組織觀察.................................................................... 26
3-4-2 X 光繞射分析...................................................................... 27
3-5 機械性質........................................................................................... 28
II
3-5-1 微硬度測量......................................................................... 28
3-5-2 壓縮試驗............................................................................. 28
第四章實驗結果與討論........................................................................32
4-1 外觀比較.......................................................................................... 32
4-2 機械性質分析.................................................................................. 32
4-3 X 光繞射分析................................................................................... 33
4-4 顯微結構分析.................................................................................. 34
第五章結論.............................................................................................62
第六章參考文獻....................................................................................63
附錄1 鋁-銅-鈦500℃的三元相圖[謝克昌教授計算].......................70
附錄2 Al-Ti 二元相圖[Massalski 1990]..............................................71
附錄3 Al-Cu 二元相圖[Gale et al. 2004] ............................................72
附錄4 Al10Cu10Ti 理論上全反應及全部未反應密度的運算..........74
III
圖表目錄
圖2 - 1 摩擦攪拌焊接方法示意圖:(a)再把凸梢插入工件之前先旋
轉工具頭(b)令工具頭接觸工件,使之產生熱能軟化(c)慢
慢使工具頭肩部也碰到工件,達到阻擋材料散出以及加
熱的目的(d)工具頭向前推進,使得材料被攪拌的更加細
緻,並且利用剛才的熱產生再結晶的情況.................... 15
圖2 - 2 退出邊(retreating side, RS)跟推進邊(advancing side, AS)示
意圖[Sato et al. 2002].............................................................16
圖2 - 3 顯示FSP 之後晶粒細化的情況的光學顯微鏡(OM)照片...17
圖2 - 4 對2024 以及6061 商用鋁合金做FSP[Li et al. 1999] .........18
圖2 - 5 FSP 各區域示意圖[Arbegast 2003] .......................................19
圖2 - 6 洋蔥環示意圖[Krishnan 2002],圖A 為顯微鏡照片,圖B
為示意圖。............................................................................19
圖2 - 7 摩擦攪拌銲接中改變走速對攪拌區溫度及硬度的影響。上
圖為攪拌區(SZ)以及未攪拌區(UZ)的溫度分佈圖,下圖則
為攪拌區硬度跟轉速的關係,可以看出轉速增加導致硬度
下降。[Kwon et al. 2003] ......................................................20
圖2 - 8 以有限元素法對AA2024 跟AA2524 的熱力參數所做的溫
度-升溫時間圖[Yang et al. 2004]........................................21
IV
圖2 - 9 這些是較新式的凸梢以及肩部的設計[Mishra 2003]..........21
圖2 - 10 材料-純銅A:退火後的粗化晶粒。B:經由室溫冷加工。
C:經由液態氮冷加工。D:液態氮冷加工後再升溫180 度。
E:液態氮冷加工後再升溫200 度[Wang 2002] ................22
圖2 - 11 添加不同尺寸顆粒得到的奈米級鋁合金機械強度示意圖
(Inoue et al. 2001)...................................................................23
圖2 - 12 Al-Ti 系統中生成各介金屬化合物的自由能比較[Peng et al.
2005] .......................................................................................24
圖3 - 1 壓製試棒的模具.....................................................................29
圖3 - 2 工具頭以及凸梢的特寫圖片.................................................29
圖3 - 3 攪拌銲接示意圖.....................................................................30
圖3 - 4 銅座示意圖.............................................................................30
圖3 - 5 壓縮試片示意圖.....................................................................31
表4 - 1 不同條件的詳細參數.............................................................39
表4 - 2 不同條件的FSP 試片,焊道區域所打出來的微硬度值....40
表4 - 3 Al20Cu15Ti-700-N2 的X 光繞射圖對照表.........................41
表4 - 4 實際密度與理論上全反應密度之比較.................................42
表4 - 5 藉由Optimas 軟體分析不同成分的銲道影像,所得到之殘
餘銅的比率(軟體分析方式為假設大於1µm 之純白色點區
域為殘餘純銅) .......................................................................42
V
圖4 - 1 Al10Cu10Ti-700-N3 攪拌外觀圖,(A)為同方向攪拌三道,
(B)為來回攪拌三道。...........................................................43
圖4 - 2 Al10Cu10Ti-700-N4 做壓縮測試得到的應力應變圖,降服應
力為895MPa..........................................................................44
圖4 - 3 Al10Cu5Ti-700-N3 做壓縮測試得到的應力應變圖,降服應
力為558MPa..........................................................................44
圖4 - 4 Al5Cu5Ti-700-N4 做壓縮測試得到的應力應變圖,降服應力
為443MPa..............................................................................45
圖4 - 5 Al20Cu15Ti-700-N2 的X 光繞射圖.....................................46
圖4 - 6 Al10Cu10Ti-700-N3 的X 光繞射圖.....................................46
圖4 - 7 Al10Cu5Ti-700-N3 的X 光繞射圖.......................................47
圖4 - 8 Al5Cu5Ti-700-N3 的X 光繞射圖.........................................47
圖4 - 9 利用光學顯微鏡區別攪拌區跟未攪拌區的顆粒大小不同,
圖(A)為未攪拌區的照片,圖(B)為攪拌區的照片.............48
圖4 - 10 Al20Cu15Ti-700-N2 的BEI 影像。....................................48
圖4 - 11 Al10Cu10Ti-700-N3 大面積BEI 影像,直徑1~10mm 的顆
粒佔全部面積3.3% ,直徑>10mm 的顆粒佔全部面積
1.7%。....................................................................................49
VI
圖4 - 12 Al10Cu5Ti-700-N3 大面積BEI 影像,直徑1~10mm 的顆
粒佔全部面積1.41% ,直徑>10mm 的顆粒佔全部面積
1.61%。..................................................................................50
圖4 - 13 Al5Cu5Ti-700-N3 大面積BEI 影像,直徑1~10mm 的顆粒
佔全部面積2.63% ,直徑>10mm 的顆粒佔全部面積0.8%。
.................................................................................................51
圖4 - 14 Al10Cu10Ti-700-N3 的高倍率BEI 影像,可以看出整個基
材密佈著1-5µm 的顆粒。....................................................52
圖4 - 15 Al10Cu10Ti-700-N3 的SEM Mapping 分析。.................53
圖4 - 16 Al10Cu5Ti-700-N3 的SEM Mapping 分析。...................54
圖4 - 17 Al5Cu5Ti-700-N3 的SEM Mapping 分析。.....................55
圖4 - 18 Al10Cu10Ti-700-N3 的TEM 影像,可以看出在次微米晶鋁
的基質中,散佈著約50nm 等軸狀的顆粒。圖(A)(B)均為大
範圍的明視野影像(bright field image),(C)是放大觀察其中
等軸顆粒的平均大小,可看出約為50nm,(D)(E)則為放大
觀察其中鋁基質的顆粒大小,可看出大約為500nm 的次微
米等級。................................................................................58
圖4 - 19 Al10Cu5Ti-700-N3 的TEM 影像,圖(A)(B)均為放大觀察
其中等軸顆粒的平均大小。................................................59
圖4 - 20 Al5Cu5Ti-700-N3 的TEM 影像圖,(A)為大範圍的明視野
影像(bright field image),(B)(C)則為放大觀察其中的小顆
粒。........................................................................................61
參考文獻 References
63
Ashby M. F., Phil. Mag., 21, 399 (1970).
Arbegast William J., Modeling friction stir joining as a metalworking
Benavides, S., Li, Y., Murr, L. E., Brown, D., McClure, J. C.,
Low-temperature friction-stir welding of 2024 aluminum, Scripta Mater.
Berbon, P. B., Bingel, W. H., Mishra, R. S., Bampton, C. C., Mahoney,
M. W., Friction stir processing: a tool to homogenize nanocomposite
aluminum alloys, Scripta Mater. 44, (2001), 61-66.
Chattopadhyay P. P., Gannabattula R. N. R., S. K. Pabi, and I. Manna,
Development of amorphous Al65Cu35-xTix alloys by mechanical alloying,
Scripta Mater. 45, (2001), 1191-1196.
Cheng Y. C., Wang S. H. , Kao P. W. , Microstructures and mechanical
properties of mechanically alloyed Al-Al3Ti alloys, Mater. Sci. forum,
Colligan K., Material flow behavior during friction stir welding of
aluminum, Welding J., 65, (1999), 229-237
Cui Q., Ohori K., Grain refinement of high purity aluminium by
asymmetric rolling, Mater. Sci. Tech., 16, (2000), 1095-1101.
Dawes C. J., Thomas W. M., Friction stir process welds aluminum alloys,
Welding J., 75, (1996), 41-45.
Gale W.F.,Totemeier T.C., Smithells metals reference book ,Elsevier
Butterworth-Heinemann ,Eighth edition (2004)
64
Guerra, M., Schmidt, C., McClure, J. C., Murr, L.E., Nunes, A. C., Flow
patterns during friction stir welding, Mater. Characterization., 49, (2003),
95-101.
Hsu C. J., Kao P. W., Ho N. J., Ultrafine-grained Al-Al2Cu composite
produced in situ by friction stir processing Scripta Mater. 53, (2005),
341-345.
Inoue, A., Kimurz, H., Fabrications and mechanical properties of bulk
amorphous, nanocrystalline, nanaquasicrystalline alloys in
aluminum-based system, Journal of Light Metals, 1, (2001), 31-41
Jata, K. V., Semiatin, S. L., Continuous dynamic recrystallization during
friction stir welding of high strength aluminum alloys, Scripta Mater. 43,
(2000), 743-749.
Kwon, Y. J., Shigematsu, I., Saito, N., Mechanical properties of
fine-grained aluminum alloy produced by friction stir process, Scripta
Mater. 49, (2003), 785-789.
Kwon, Y. J., Saito, N.; Shigematsu, I., Friction stir process as a new
manufacturing technique of ultrafine grained aluminum alloy, J. Mater.
Sci. Lett. 21, (2002), 1473-1476
Kumar, K. S., Van Swygenhoven, H., Suresh, S., Mechanical behavior of
nanocrystalline metals and alloys, Acta Matter., 51, (2003), 5743-5774.
Kwon, Y. J., Shigematsu, I., Saito, N., Mechanical properties of
fine-grained aluminum alloy produced by friction stir process, Scripta
Mater. 49, (2003), 785-789.
Krishnan K. N., On the formation of onion rings in friction stir weld,
Material science and engineering. A327, (2002), 246-251
Lee, W. B., Yeon, Y. M., Jung, S. B., The improvement of mechanical
properties of friction-stir-welded A356 Al alloy, Mater. Sci. and Eng.,
A355, (2003), 154-159.
65
Lee, K. M., Moon, I. H., High temperature deformation behavior of
mechanically alloyed Al-Ti alloys, Scripta Mater., 26, (1992), 123-126.
Lerf, R., Morris, D. G., Mechanical alloying of Al-Ti alloys, Mater. Sci.
and Eng., A128, (1990), 119-127.
Liu, G., Murr, L. E., Niou, C-S., McClure, J. C., Vega, F. R.,
Microstructural aspects of the friction-stir welding of 6061-T6 aluminum,
Scripta Mater., 37, (1997), 355-361.
Li, Y., Murr, L. E., McClure, J. C., Solid-state flow visualization in the
friction-stir welding of 2024 Al to 6061 Al, Scripta Mater., 40, (1999),
1041-1046.
Li, Y., Murr, L. E., McClure, J. C., Flow visualization and residual
microstructures associated with the friction-stir welding of 2024
aluminum to 6061 aluminum, Mater. Sci. and Eng., A271, (1999),
213-223.
Lloyd D. J., Deformation of fine-grained aluminum alloys, Metal Sci., 14,
(1980), 193-198.
Massalski Th.B.,(ed.), Binary alloy phase diagrams, 2 nd ed. ASM
International, Materials Park,OH,(1990).
Masumura, R. A., Hazzledine, P. M., Pande, C. S., Yield stress of fine
grained materials, Acta Mate., 46, (1998), 4527-4534.
Mishea R. S., Mahoney M. W., McFadden S. X., Mara N. S., Mukherjee
A. K., High strain rate superplasticity in a friction stir processed 7075 Al
alloy, Scripta mater., 42, (2000), 163-168
Mishra R.S., Friction stir processing technologies, Advanced Materials
and Processes, 10, (2003), 43-46
Moreeno, D., Garrett, J., Embury, J. D., A technique for rapid
characterization of intermetallics and interfaces, Intermetallics, 7, (1999),
1001-1009.
66
Murayama, M., Horita, Z., Hono, K., Microstructure of two-phase Al–1.7
at% Cu alloy deformed by equal-channel angular pressing, Acta Mate., 49,
(2001), 21-29.
Park Seung Hwan C., Sato Yutaka S., Kokawa Hiroyuki, Basal plan
texture and flow pattern in friction stir weld of a magnesium alloy, Metall.
Mater. Trans. A, 34A, (2003), 987-994.
Peel, M., Steuwer, A., Preuss, M., Withers, P. J., Microstructure,
mechanical properties and residual stresses as a function of welding speed
in aluminium AA5083 friction stir welds, Acta Mate., 51, (2003),
4791-4801.
Peng L. M., Wang J. H., Li H., Zhao J. H., He L. H., Synthesis and
microstructural characterization of Ti-Al3Ti metal-intermetallic
laminate(MIL) composites, Scripta mater., 52, (2005), 243-248.
Reynolds A. P., Visualisation of material flow in autogenous friction stir
welds, Sci. and Tec., 5, (2000), 120-124.
Rhodes, C. G., Mahoney, M. W., Bingel, W. H., Spurling, R. A.,
Bampton, C. C., Effects of friction stir welding on microstructure of 7075
aluminum, Scripta Mater. 36, (1997), 69-75.
Rhodes, C. G., Mahoney, M. W., Bingel, W. H., Calabrese, M. Fine-grain
evolution in friction-stir processed 7050 aluminum, Scripta Mater. 48,
(2003), 1451-1455.
Richert, M., Liu, Q., Hansen, N., Microstructural evolution over a large
strain range in aluminium deformed by cyclic-extrusion–compression,
Mater. Sci. and Eng., A260, (1999), 275-283.
Robert E. Reed-Hill, Reza Abbaschian, Physical metallurgy principles,
(1994), 192-194
Saito N. and Shigematsu I., Grain Refinement of 1050 Aluminum Alloy
by Friction Stir Processing, J. Mater. Sci. Letters., Vol.20, No.20, (2001),
1913-1915.
67
Saito, Y., Tsuji, N., Utsunomiya, H., Sakai, T., Hong, R. G., Ultra-fine
grained bulk aluminum produced by accumulative roll-bonding (ARB)
process, Scripta Mater. 39, (1998), 1221-1227.
Sato, Y. S., Kokawa, H., Enomoto, M., Jogan, S., Microstructurral
evolution of 6063 aluminum during friction-stir welding, Metall. Mater.
Trans. A, 30, (1999), 2429-2437.
Sato, Y. S., Kokawa, H., Ikeda, K., Enomoto, M., Jogan, S., Hanshimoto,
T., Microtexture in the friction-stir weld of an aluminum alloy, Metall.
Mater. Trans. A, 32(2001), 941-948.
Saunders I., Nutting J., Deformation of metals to high strain using
combination of torsion and compression, Metal Sci., 18, (1984), 571-575.
Segal, V. M., Materials processing by simple shear, Mater. Sci. and Eng.,
A197, (1995), 157-164.
Segal, V. M., Hartwig K. T., Goforth R. E., In situ composite processed
by simple shear, Mater. Sci. and Eng., A224, (1997), 107-115.
Seidel T. U., Reynolds A. P.,Visualization of the material flow in
AA2195 friction-stir welds using a marker insert technique, Metall.
Mater. Tran. A, 32A, (2001), 2879-2884.
Senkov, O. N., Froes, F. H., Stolyarov, V. V., Valiev, R. Z., Liu, J.,
Microstructure and microhardness of an Al-Fe alloy subjected to severe
plastic deformation and aging, Nanostruct. Mater., 10, (1998), 691-698
Semiatin S. L., K. V. Java, M. D. Uchic, P. B. Berbon, Plastic flow and
fracture behavior of an Al-Ti-Cu nanocomposite, Scripta Mater. 44
(2001), 395-400.
Srinivasan, S., Chen, S. R., Schwarz, R. B., Synthesis of Al/Al3Ti two
alloys by mechanical alloying, Mater. Sci. and Eng., A153, (1992),
691-695.
68
Stolyarov, V. V., Latysh, V. V., Shundalov, V. A., Salimonenko, D. A.,
Islamgaliev, R. K., Valiev, R. Z., Influence of severe plastic deformation
on aging effect of Al-Zn-Mg-Cu-Zr alloy, Mater. Sci. and Eng.,
A234/236, (1997), 339-342.
Su Jian-Qing, Nelson Tracy W., Sterling Colin J., Friction stir processing
of large-area bulk UFG aluminum alloys, Scripta Mater., 52, (2005),
135-140.
Sutton, M. A., Yang, B., Reynolds, A. P., Taylor, R., Microstructural
studied of friction stir welds in 2024-T3 aluminum, Mater. Sci. and Eng.,
A323, (2002), 160-166.
Tarnacki, J., Kim Young-Won, Rapid solidification of aluminum based
ordered cubic intermetallic compounds, The Minerals, Metals and
Materials Society, 1988
Tsuji, N., Sato, Y., Utsunomiya, H., Tanigawa, S., Ultra-fine grained bulk
steel produced by accumulative roll-bonding (ARB) process, Scripta
Mater. 40 (1999), 795-800. Science and Technology of Advanced
Materials, 5, (2004), 173-180.
TWI; W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Murch, P.
Temple-Smith and C. J. Dawes, PCT WordPatent Application WO
93/10935. Filed: Nov. 27, 1992 (UK 9125978.8, Dec. 6, 1991). Publ:
June 10, 1993.
TWI; W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Murch, P.
Temple-Smith and C. J. Dawes, European Patent Application 653,265A2.
Filed: Nov. 27, 1992 (UK 9125978.8, Dec. 6,(1991). Publ: May 17, 1995.
Wang S. H., Kao P. W., and Chang C. P., Stress-srain behavior of
fine-grained Al-Al3Ti alloys, Scripta Metall. Mater., 29, 323 (1993).
Wang S. H., Kao P. W., and Chang C. P., The strengthening effect of
Al3Ti in ultrafine grained Al-Al3Ti alloys, Scripta Metall. Mater., 40, 289
(1999).
69
Wang Y., Chen M., Zhou F., Ma E., High tensile ductility in a
nanostructured metal, Nature 419, (2002), 912-915.
Zhang, S., Nic, J. P., Mikkola, D. E., New cubic phase formed by
alloying Al3Ti with Mn and Cr, Scripta Matall.. 24, (1990), 57-62.
張志溢, 摩擦旋轉攪拌製程對AZ31鎂合金晶粒細化之研究, 國立中
山大學材料科學研究所, 碩士論文, 民93
陳思達, 摩擦攪拌銲接對Al-Cu 系2218 合金微觀組織變化之效應,
國立成功大學材料科學及工程學系, 碩士論文, 民93
許芝菁, Ultra-fine grain two-phase aluminum alloys produced by
Friction stir processing, 國立中山大學材料科學研究所, 未發表資料
張期詠, 以摩擦攪拌製程製造Al-Al3Ti 複材, 國立中山大學材料科學
研究所, 碩士論文, 民94
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.204.42.89
論文開放下載的時間是 校外不公開

Your IP address is 18.204.42.89
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code