Responsive image
博碩士論文 etd-0722108-105724 詳細資訊
Title page for etd-0722108-105724
論文名稱
Title
無線網際網路可伸縮性視訊傳輸之適應性錯誤控制策略
Adaptive Error Control Schemes for Scalable Video Transmission over Wireless Internet
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
101
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-16
繳交日期
Date of Submission
2008-07-22
關鍵字
Keywords
叢集錯誤管道、可伸縮性視訊、適應性錯誤控制
adaptive error control, scalable video, burst error channel
統計
Statistics
本論文已被瀏覽 5731 次,被下載 0
The thesis/dissertation has been browsed 5731 times, has been downloaded 0 times.
中文摘要
隨著近年來無線網路傳輸和多媒體影音壓縮技術的快速發展,透過無線網路即時傳輸影音資訊,將成為下一代通訊系統發展的新方向。然而由於使用無線傳輸媒介,使得無線網路具有頻寬較低及高遺失率(loss rate)等特性。此外多媒體視訊傳輸通常具有即時的時間限制,讓無線多媒體通訊系統設計更具挑戰性。
在叢集錯誤管道上對於可伸縮性視訊之傳輸,本論文提出一個適應性不等誤碼保護與封包長度之配置策略。我們發展出一個解析模型來評估管道位元錯誤率對於可伸縮性串流視訊畫質的影響。同時,所提出的視訊傳輸策略,結合適應性的封包長度配置與不等誤碼保護來增加點對點的視訊畫質。在叢集錯誤管道上,許多可伸縮性視訊傳輸的不同策略都將被拿來比較,而由模擬的結果顯示,論文中所提出的方法在變異性高的管道狀況中能達到較少且較平緩的畫質遞減。
再者,為了能因應許多視訊傳輸應用上對即時性的需求,此篇論文也提出了低時間複雜度之封包長度配置策略。而由測試的結果顯示,此方法相較於最佳化的方法雖犠牲了少許視訊畫質,但仍然能適應各種網路狀況而有較平順的畫質表現,而且相較於最佳化的方法,此策略更是大大降低了計算時間複雜度。
Abstract
Based on the fast evolution of wireless networks and multimedia compression technologies in recent years, real-time multimedia transmission over wireless networks will be the next step for the implementation of contemporary communication system. Lower bandwidth and higher loss rate make wireless networks hard to transmit multimedia content than its wired counterpart. In addition, the common delay constraint from real-time multimedia transmission raises the challenges for the design of wireless communication system.
This dissertation proposes an adaptive unequal error protection (UEP) and packet size assignment scheme for scalable video transmission over a burst error channel. An analytic model is developed to evaluate the impact of channel bit-error-rate on the quality of streaming scalable video. A video transmission scheme, which combines the adaptive assignment of packet size with unequal error protection to increase the end-to-end video quality is proposed. Several distinct scalable video transmission schemes over burst-error channel have been compared, and the simulation results reveal that the proposed transmission schemes can react to varying channel conditions with less and smoother quality degradation.
Furthermore, in order to meet the real time need in many video transmission applications, this dissertation has proposed low time-complexity packet size assignment schemes. Meanwhile, from the test result, it can be seen that although this method has sacrificed a little bit video quality as compared to optimized method, yet it can adapt to all kinds of network situations and display smoother quality and performance. Moreover, as compared to optimized method, this strategy greatly reduces the calculation time-complexity.
目次 Table of Contents
LIST OF FIGURES III
LIST OF TABLES V
LIST OF SYMBOLS VI
CHAPTER 1 INTRODUCTION 1
1.1 OVERVIEW 1
1.2 THE CONTRIBUTIONS OF THIS DISSERTATION 5
CHAPTER 2 BACKGROUND 8
2.1 REAL-TIME STREAMING SERVICE 8
2.1.1 TECHNIQUE OF REAL TIME STREAMING VIDEO 9
2.1.2 MPEG-4 FGS VIDEO COMPRESSION TECHNIQUE AND FEATURES 11
2.2 ERROR CONTROL 17
2.2.1 FEC 18
2.2.2 DELAY-CONSTRAINED RETRANSMISSION 20
2.2.3 ERROR-RESILIENT ENCODING 21
2.2.4 ERROR CONCEALMENT 23
2.3 H.264 DATA PARTITIONING 24
2.3.1 NAL (NETWORK ABSTRACTION LAYER) 25
2.3.2 DATA PARTITIONING 26
2.4 PACKETIZATION SCHEME 28
2.4.1 BLOCK OF PACKETS (BOP) 28
2.4.2 ANALYTICAL MODEL OF UEP PERFORMANCE 30
CHAPTER 3 CHANNEL MODEL 33
3.1 ERRORS IN WIRELESS CHANNEL 34
3.2 GILBERT MODEL 36
3.3 PACKET LOSS PATTERNS 38
CHAPTER 4 OPTIMAL ADAPTIVE ASSIGNMENT SCHEMES 41
4.1 ADAPTIVE ASSIGNMENT SCHEME 43
4.1.1 AUEP (ADAPTIVE UEP) + FPS (FIXED PACKET SIZE) 44
4.1.2 FUEP (FIXED UEP) + APS (ADAPTIVE PACKET SIZE) 46
4.1.3 AUEP (ADAPTIVE UEP) + APS (ADAPTIVE PACKET SIZE) 49
4.2 SIMULATION RESULTS 51
4.2.1 AUEP (ADAPTIVE UEP) + FPS (FIXED PACKET SIZE) 53
4.2.2 FUEP (FIXED UEP) + APS (ADAPTIVE PACKET SIZE) 56
4.2.3 AUEP (ADAPTIVE UEP) + APS (ADAPTIVE PACKET SIZE) 58
CHAPTER 5 LOW-COMPLEXITY ADAPTIVE ASSIGNMENT SCHEMES 59
5.1 ADAPTIVE PACKET DATA SIZE (APDS) 61
5.2 ADAPTIVE PACKET SIZE FOR BOP (APSB) 65
5.3 ADAPTIVE UEP WITH REGRESSION ANALYSIS (AUEP-RA) 69
5.4 SIMULATION RESULTS 73
CHAPTER 6 CONCLUSIONS AND FUTURE WORKS 80
BIBLIOGRAPHY 82
APPENDIX A THE DEDUCTION OF ADAPTIVE PACKET DATA SIZE (APDS) 88
參考文獻 References
[1] B. Hong and A. Nostratinia, “Rate-constrained scalable video transmission over the internet,” Proc. 12th Packet Video Workshop, Pittsburgh, PA, Apr. 2002.
[2] B. Kim, Z. Xiong, and W. Pearlman, “Low bit-rate scalable video coding with 3D set partitioning in hierarchical trees (3D SPIHT),” IEEE Trans. on Circuit and Systems for Video Technology, vol. 10, pp. 1374-1387, Dec. 2000.
[3] C. C. Tan, N. C. Beaulieu, “On First-Order Markov Modeling for the Rayleigh Fading Channel,” IEEE Trans. on Communication, vol. 48, no. 12, pp. 2032-2040, Dec. 2000.
[4] C. Hsu and A. Ortega, “A Lagrangian Optimization Approach to Rate Control for Delay-Constrained Video Transmission over Burst-Error Channels,” Proc. ICASSP’98, vol.5, Seattle, WA, pp.2989-2992, May 1998.
[5] C. S. Yang, C. W. Lee and Y. C. Su, “Adaptive Packet Size Assignment for Scalable Video Transmission over Burst Error Channel,” 10th International Conference on Distributed Multimedia Systems (DMS 2004), San Francisco Bay, USA, pp.99-103, Sept. 2004.
[6] C. Costa, Y. Eisenberg, F. Zhai, A.K. Katsaggelos, “Energy efficient wireless transmission of MPEG-4 Fine Granular Scalable Video”, Proc.of ICC 2004, Paris, Vol. 5, pp. 3096-3100, 20-24 June 2004.
[7] C. W. Lee, C. S. Yang and Y. C. Su, "Adaptive UEP and Packet Size Assignment for Scalable Video Transmission over Burst Error Channels," EURASIP Journal on Applied Signal Processing, Article ID 10131, 9 pages, 2006.
[8] D. N. Dung, W. A. C. Fernando, “Channel Coding For H.264 Video In Constant Bit Rate Transmission Context Over 3G Mobile Systems,” Proceedings of IEEE International Symposium on Circuits and Systems, 2003.
[9] D. Taubman and A. Zakhor, “Multirate 3D Subband Coding of Video,” IEEE Trans. on Image Processing, vol. 3, no. 5, pp. 572-588, Sept. 1994.
[10] D. Wu, Y. T. Hou, W. Zhu, Y. Q. Zhang, J. M. Peha, “Streaming video over the Internet,” Approaches and directions. IEEE Trans. on Circuits and Systems for Video Technology, vol. 11, pp. 282-300, 2001.
[11] E. N. Gilbert, “Capacity of a burst-noise channel,” Bell Syst. Tech. J., vol.39, pp.1253-1265, Sept. 1960.
[12] E. O. Elliott, “A model of the switched telephone network for data communications,” Bell Syst. Tech. J., vol. 44, no. 1, pp. 89-109, Jan. 1965.
[13] E. O. Elliott, “Estimates of error rates for codes on burst-noise channels,” Bell Syst. Tech. J., vol. 42, pp. 1977-1997, Sept. 1963.
[14] F. Wu, S. Li, and Y. Chang, “A framework for Efficient Progressive Fine Granularity Scalable Video Coding,” IEEE Trans. on Circuit and System for Video Technology, vol. 11, no. 3, pp. 332-344, Mar. 2001.
[15] G. Wang, Q. Zhang, W. Zhu and Y. Zhang, “Channel-adaptive unequal error protection for scalable video transmission over wireless channel,” Proc. SPIE VCIP’01, vol.4310, San Jose, CA, pp.648-655, Jan. 2001.
[16] H. S. Wang and N. Moayeri, “Finite-state Markov channel: A useful model for radio communication channel,” IEEE Trans. on Veh. Technol., vol. 44, pp. 163-171, Feb. 1995.
[17] ISO/IEC 14496-10, "Information technology - Coding of audio-visual objects - Part 10: Advanced video coding"; also ITU-T Recommendation H.264: Advanced video coding for generic audiovisual services", 2003
[18] J. Vass and X. Zhuang, “Adaptive and Integrated Video Communication System Utilizing Novel Compression, Error Control, and Packetization Strategies for Mobile Wireless Environments,” Packet Video 2000, Cagliari, Italy, May 2000.
[19] K. Stuhlmüller, M. Link, B. Girod and U. Horn, “Scalable Internet Video Streaming With Unequal Error Protection,” Packet Video Workshop, New York, Apr. 1999.
[20] M. van der Schaar and H. Radha, “Packet-loss resilient internet video using MPEG-4 Fine-granular Scalability”, Proc. of ICIP, Vancouver, pp. 372-375, Sept. 2000.
[21] M. van der Schaar, and H. Radha, “A hybrid temporal-SNR fine-granular scalability for Internet video,” IEEE Trans. on Circ. and Syst. for Video Techn., vol. 11, no. 3, pp. 318-331, March 2001.
[22] M. Yajnik, S. Moon, J. Kursoe, and D. Towsley, "Measurement and modelling of the temporal dependence in packet loss," Proc. IEEE INFOCOM'99, New York, NY, pp.345-352, March 1999.
[23] R. Singh and A. Ortega, “Modeling of temporal dependence in packet loss using universal modeling concepts,” Proc. 12th Packet Video Workshop, Pittsburgh, PA, Apr. 2002.
[24] S. Wenger, “H.264/AVC over IP,” IEEE Transactions on Circuits and Systems for Video Technology, vol.13, pp. 645-656, July 2003.
[25] T. Stockhammer and M. Bystrom, “H.264/AVC data partitioning for mobile video communication,” in Proc. IEEE Int. Conference on Image Processing, Singapore, Oct 2004, pp. 545–548.
[26] T. Stockhammer, “Progressive Video Transmission for Packet-Lossy Channels exploiting Feedback and Unequal Erasure Protection,” IEEE International Conference on Image Processing 2002 (ICIP 2002), Rochester, NY, pp. 169-172, Sept. 2002.
[27] T. Vu, D. Reschke and W. Horn, “Dynamic Packet Size Mechanism (DPSM) for Multimedia in Wireless networks”, MIK Workshop, Erfurt, pp. 667-674, 2002.
[28] U. Hong, K. Stuhlmüller, M. Link and B. Girod, “Robust internet video transmission based on scalable coding and unequal error protection,” Image Communication, vol. 15(1-2), pp. 77-94, Sept. 1999.
[29] W. Li, “Overview of Fine Granularity Scalability in MPEG-4 Video Standard,” IEEE Trans. on Circuit and System for Video Technology, vol. 11, no. 3, pp. 301-317, Mar. 2001.
[30] W. Wang, Z. Xia, H.. Cui and K. Tang, “Robust H.264/AVC transmission with optimal mode selection and data partitioning,” IEEE International Symposium on Communications and Information Technology, ISCIT 2005, 12-14 Oct. 2005, Vol. 2, pp. 1444-1447.
[31] Y. C. Su, C. S. Yang and C. W. Lee, “Optimal FEC assignment for scalable video transmission over burst error channel with loss rate feedback,” Signal Processing: Image Communication, vol. 18, pp.537-547, Aug. 2003.
[32] Y. C. Su, C. S. Yang and C. W. Lee, “The analysis of packet loss prediction for Gilbert-model with loss rate uplink,” Information Processing Letters, vol. 90/3, pp. 155-159, May 2004.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.50.83
論文開放下載的時間是 校外不公開

Your IP address is 3.145.50.83
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code