Responsive image
博碩士論文 etd-0722108-151229 詳細資訊
Title page for etd-0722108-151229
論文名稱
Title
螺栓鎖緊順序對微型質子交換膜燃料電池流道板變形之影響
Effect of Bolts Locking Sequence on the Deformation of Flow-Channel Plates in Micro-PEMFC
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
156
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-09
繳交日期
Date of Submission
2008-07-22
關鍵字
Keywords
質子交換膜燃料電池、氣體擴散層、螺栓鎖緊順序、流道板
Flow-channel plates, PEM fuel cell, Gas diffusion layers, Bolts locking sequence
統計
Statistics
本論文已被瀏覽 5674 次,被下載 1712
The thesis/dissertation has been browsed 5674 times, has been downloaded 1712 times.
中文摘要
一個質子交換膜燃料電池,其組裝的設計和方法,對電池的性能優劣,有著非常重要的地位。燃料電池在組裝時,容易造成各組件之間的相互變形,包括雙極板(Bipolar Plates)、流道板(Flow-Channel Plates)、氣體擴散層(Gas Diffusion Layers)和質子交換膜(Membrane Eletrode Assembly,MEA)。在以往的研究中提到,以螺栓鎖緊燃料電池,會對內部流道板產生位移變形,此現象容易使燃料電池的氣體外漏,或是造成內部的接觸阻力變大,甚至使得整個電池使去功能。
在本文中,將針對不同的螺栓鎖緊順序,對微型質子交換膜燃料電池內部的流道板,其所產生的位移變形做一個研究探討。我們將採用商用套裝軟體ANSYS,來建構3-D的單一微型質子交換膜燃料電池模型,並對不同螺栓鎖緊順序,所造成內部流道板位移變化,做數值模擬分析,最後再討論出一個合適的鎖緊順序,以減少流道板的變形。
Abstract
The design and method of cell assembly plays an important role in the performance of PEM fuel cell. The cell assembly will affect the contact behavior between the bipolar plates, flow-channel plates, gas diffusion layers (GDLs) and membrane electrode assembly (MEA). From the past studies, it was noted that the flow-channel plates in the cell will be deformed while the cell was assembled by locking with bolts. This phenomenon may lead to leakage of fuels, high contact resistance and malfunctioning of the cells.
The main aim of this research is to study the variation of the deformation mode of the flow-channel plat in a micro-PEM fuel cell assembly subjected to different bolts locking sequences. The commercial FEM package, ANSYS, was adopted to model the three-dimensional single micro-PEMFC FEM model and the numerical simulation analyses were performed. The effect of the bolts locking sequence on the deformations of flow-channel plate in the micro-PEMFC was presented. A most properly bolts locking sequence was proposed also.
目次 Table of Contents
目錄..........................................................................................I
表目錄....................................................................................IV
圖目錄...................................................................................VII
摘要......................................................................................XIII
Abstract...............................................................................XIV
第一章 緒論 ...........................................................................1
1.1燃料電池的發展...............................................................1
1.2燃料電池基本原理...........................................................2
1.3質子交換膜燃料電池.......................................................4
1.4研究目標...........................................................................6
1.5文獻回顧...........................................................................7
1.5.1燃料電池分析................................................................7
1.5.2燃料電池組裝壓力模擬................................................8
1.5.3燃料電池組裝壓力對效率之影響.............................10
1.5.4燃料電池均勻組裝壓力之設計.................................12
1.6 論文架構.......................................................................13
第二章 數值模擬.................................................................17
2.1有限元素法.....................................................................17
2.2燃料電池模型.................................................................18
2.2.1模型尺寸、材料性質和名稱定義.............................18
2.2.2左右側流道板形狀設計上的差異.............................20
2.3邊界條件和假設條件.....................................................20
2.3.1拘束條件.....................................................................20
2.3.2Contact Element與Glue..........................................24
2.3.3螺栓鎖緊壓力.............................................................26
2.3.4分割元素收斂性.........................................................28
2.3.5假設條件.....................................................................30
2.4負載施加方式.................................................................30
第三章 兩側流道板的比較.................................................49
3.1分析方法........................................................................49
3.1.1位移的取樣和定義.....................................................49
3.1.2應力的取樣和定義.....................................................50
3.2位移變形分析.................................................................52
3.2.1位移分析圖.................................................................52
3.2.2分析討論.....................................................................54
3.2.3左側流道板和右側流道板之翹曲度比較.................56
3.3應力分佈分析................................................................59
第四章 螺栓鎖緊順序分析.................................................91
4.1對角線鎖法....................................................................92
4.2順時鐘鎖法....................................................................95
4.3逆時鐘鎖法....................................................................96
4.4橫向順序鎖法................................................................98
4.5直向順序鎖法..............................................................100
4.6不同鎖緊順序對左右側流道板比較..........................101
4.7流道板應力分析..........................................................102
4.8小結..............................................................................103
第五章 結論與未來展望...................................................132
5.1結論..............................................................................132
5.2未來展望......................................................................133
參考文獻............................................................................135
參考文獻 References
[1http://www.epochtimes.com/b5/6/12/4/n1544048.htm;2008/2/5

[2http://biodiesel.environmentalactiongroup.org/hydrogen.html; 2008/2/5

[3]A. Kumar and R. G. Reddy, “Effect of channel dimensions and shape in the flow-field distributor on the performance of polymer electrolyte membrane fuel cells”, Journal of Power Sources, Vol. 113, pp.11-18, 2003

[4http://www.nsc.gov.tw/_newfiles/popular_science.asp?add_year=2003&popsc_aid=254; 2008/2/5

[5]J. S. Kuo, Design and microfabrications for micro PEMFCs, Master Thesis, Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan, 2004

[6]D. Singh, D. M. Lu and N. Djilali, “A two-dimensional analysis of mass transport in proton exchange membrane fuel cells”, Journal of Engineering Science, Vol. 37, pp.431-452, 1999

[7]H. Dohle, A. A. Kornyshev, A. A. Kulikovsky, J. Megel and D. Stolten, “The current voltage plot of PEM fuel cell with long feed channels”, Electrochemistry Communications, Vol. 3, pp.73-80, 2001

[8]Y. S. Shih, “Reliability analysis of the cracked Ag-SU8 interface on the channel wall in a micro-PEMFC”, Master Thesis, Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan, 2006

[9]Y. L. Huang, “3-Dimensional Numerical Stress Analysis around a Micro-Channel Wall Crack Tip in a Micro-PEMFC”, Master Thesis, Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan 2007

[10]H. S. Chu, C. Yeh and F. Chen, “Effects of porosity change of gas diffuser on performance of proton exchange membrane fuel cell”, Journal of Power Sources, Vol. 123, pp.1-9, 2003

[11]S. J. Lee, C. D. Hsu and C. H. Huang, “Analyses of the fuel cell stack assembly pressure”, Journal of Power Sources, Vol. 145, pp.353-361, 2005

[12]G. G. Scherer, “Interfacial aspects in the development of polymer electrolyte fuel cells”, Solid State Ionics, vol. 94, pp.249-257, 1997

[13]W. K. Lee, C. H. Ho, J. W. Van Zee and M. Murthy, “The effects of compression and gas diffusion layers on the performance of a PEM fuel cell”, Journal of Power Sources, Vol. 84, pp. 45-51, 1999

[14]Toray Industries, Tokyo 103, Japan, http://www.toray.co.jp/; 2007/5/20

[15]E-TEK, Natick, MA, USA, http://www.etek-inc.com/home.php; 2007/5/20

[16]W. L. Gore & Associates, Elkton, MD, USA, http://tw.search.yahoo.com/search?fr=yfp&ei=UTF-8&p=W.L.+Gore+%26+Associates; 2007/05/20

[17]J. Nordlund, “A model for the porous direct methanol fuel cells anode”, Journal of Electrochem Society, Vol. 149, pp.1107-1113, 2002

[18]郭寶仁,燃料電池複合材料雙極板研發及性能之研究,碩士論文,國立中央大學機械工程學系,中壢,台灣,2005

[19]M. V. Williams, E. Begg, L. Bonville, H. R. Kunz and J. M. Fenton, “Characterization of gas diffusion layer s for PEMFC”, Journal of Electrochemical Society, Vol. 151, pp.1173-1180, 2004.

[20]D. Chu and R. Jiang, “Performance of polymer electrolyte membrane fuel cell PEMFC stacks”, Journal of Power Sources, Vol. 83, pp.128-133, 1999

[21]R. Jiang and D. Chu, “Stack design and performance of polymer electrolyte membrane fuel cells”, Journal of Power Sources, Vol. 93, pp.25-31, 2001

[22] S. Giddey, F. T. Ciacchi, and S. P. S. Badwal, “Design, assembly and operation of polymer electrolyte membrane fuel cell stacks to 1kW capacity”, Journal of Power Sources, Vol. 125, pp.155-165, 2004

[23]B. Zhang, X. Wang and Y. Song, “Pressurized endplates for uniform pressure distributions in PEM fuel cells”, Proceedings of the First International Conference on Fuel Cell Development and Deployment, Storrs, University of Connecticut, USA, 2004

[24]J. Ge, A. Higier and H. Liu, “Effect of gas diffusion layer compression on PEM fuel cell performance”, Journal of Power Sources, Vol. 159, pp.922-927, 2006

[25]L. Wang, A. Husar, T. Zhou and H. Liu, “A parametric study of PEM fuel cell performances”, Journal of Hydrogen Energy, Vol. 28, pp.1263-1272, 2003

[26]R. D. Cook, D. S. Malkus and M. E. Plesha, Concepts and applications of finite element analysis, 3rd Ed., John Wiley and Sons, Inc.: New York, 1989

[27]S. S. Hsieh and K. M. Chu, Channel and rib geometric scale effects of flowfield plates on the performance and transient thermal behavior of a micro-PEM fuel cell, Journal of Power Sources, Vol. 173, pp.222-232, 2007

[28]http://www.engineeringtoolbox.com/young-modulus-d_417.html;2007/06/14

[29]http://www.engineeringtoolbox.com/poissons-ratio-d_1224.html; 2007/06/14

[30]http://www.matweb.com/search/QuickText.aspx?SearchText=PMMA; 2007/06/14

[31]ANSYS, HandBook, mk:@MSITStore:D:Program%20FilesANSYS%20Incv110commonfileshelpen-usansyshelp.chm::/graphics/GMOD5-56.gif; 2008/0102

[32]ANSYS, HandBook, mk:@MSITStore:D:Program%20FilesANSYS%20Incv110commonfileshelpen-usansyshelp.chm::/graphics/ GMOD5-57.gif; 2008/01/02

[33]ANSYS, HandBook, mk:@MSITStore:D:Program%20FilesANSYS%20Incv110commonfileshelpen-usansyshelp.chm::/graphics/ GMOD5-58.gif; 2008/01/02

[34]ANSYS, HandBook, mk:@MSITStore:D:Program%20FilesANSYS%20Incv110commonfileshelpen-usansyshelp.chm::/ Hlp_E_T ARGE170.html; 2008/01/02

[35]C. H. Chien, C. W. Lin, S. C. Li, “Experimental study of assembly contact pressure of micro-fuel cell”, SEM XI International Congress & Exposition on Experiment and Applied Mechanics, Orlando, Florida, USA, 2008

[36]ANSYS, HandBook, mk:@MSITStore:D:Program%20FilesANSYS%20Incv110commonfileshelpen-usansyshelp.chm::/graphics/GMOD7-4.gif; 2008/01/02

[37]http://www.es.ncku.edu.tw/~leehh/ANSYS/CAE_Course/Chap15b_Dynamics/Response.htm; 2008/04/21

[38]http://www.es.ncku.edu.tw/~leehh/ANSYS/CAE_Course/Chap15b_Dynamics/Contact.htm; 2008/04/21
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code