Responsive image
博碩士論文 etd-0722108-163943 詳細資訊
Title page for etd-0722108-163943
論文名稱
Title
具萊曼放大器的分波多工被動光網路之研究
A Study of WDM Passive Optical Network with Raman Amplification
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
49
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-06-16
繳交日期
Date of Submission
2008-07-22
關鍵字
Keywords
萊曼放大器、雷利散射、串音、被動光網路
Rayleigh backscattering, PON, Crosstalk, Raman amplifier
統計
Statistics
本論文已被瀏覽 5703 次,被下載 1727
The thesis/dissertation has been browsed 5703 times, has been downloaded 1727 times.
中文摘要
光接取技術(Optical fiber access technology)是實現將寬頻通訊給每個用戶的關鍵技術,而目前被動光網路(PON)是可以讓用戶享有高速的網路存取。 隨著寬頻存取的需求日益漸增,發展新的技術的研究去實現寬頻接取系統是相當重要。目前,波分多工(WDM)被動光網路是被當作未來實現寬頻光接取系統的技術。近年來的被動光網路系統從中心網路為起點涵蓋20公里的範圍。因為接取系統的市場是集中在人口密集的區域,為了增加可應用的範圍而要求去延長此網路系統的距離。因為世界上有很多區域的人口是比較不密集,所以本篇論文集中討論如何延長波分多工被動光網路系統的距離。
單一光纖做80公里的雙向對稱上下行10.66Gb/s速度的資料傳輸傳輸之波分多工被動網路系統在本篇被提出。為了延長波分多工被動光網路系統的距離,我們採用萊曼放大器(Raman amplifier)。因為萊曼放大器可同時放大雙向的光信號,將有效率的延長波分多工被動光網路的距離。雖然如此,因為萊曼放大器的引入而造成一些效應使得效能降低,所以分辨清楚這些效應及提供解決方法是相當重要,而這篇論文也討論這類的問題。雷利散射(Rayleigh backscattering)是影響效能的重要因素之一,因為萊曼放大器也會放大雷利散射,所以它會影響到信號而造成串音(Crosstalk)更為嚴重。
首先,我們做實驗去討論雷利散射的影響,並提出方法去克服串音造成的效能降低。而另外一組實驗,實現了80公里具萊曼放大器之波分多工光網路系統,驗證了此系統的可行性。最後,這篇論文以成功的驗證延長距離之波分多工被動光網路系統做為結論。
Abstract
Optical fiber access technology is the key to realize a broadband communication for everyone, and the passive optical network (PON) is enabling customers to enjoy high-speed internet access now. As the demand for the broadband access is still growing, a study to find out technologies to realize wider bandwidth for the access system is quite important. At this moment, wavelength division multiplexing (WDM) PON is the most promising technology for the future optical fiber access system.
Current PON system covers a reach of within 20km from a central office, because the market of the access system is focusing on well-populated area. It is required to extend the reach of the PON system to enhance the applicable area, because there are many regions in the world where are not so highly populated. Therefore, this master thesis is focusing on to enhance the reach of the WDM-PON system. A little more specifically, a single fiber bidirectional 80 km WDM PON system with symmetric up-and-downstream data rate of 10.66Gb/s is reported. In order to enhance the reach of the WDM-PON system, Raman amplifier is utilized. As the Raman amplifier can amplify both directional optical signals simultaneously, it is quite effective to enhance the reach of the WDM-PON system. Even though, there are several effects that cause performance degradations of the system by introducing the Raman amplifier. It is important to clarify such effects and to provide solutions. This thesis discusses these issues also.
One factor to degrade the system performance is the Rayleigh backscattering. As the Raman amplifier amplifies the Rayleigh backscattering, it interferes to the signal and causes the crosstalk penalty. At first, an experimental study has been conducted to clarify the significance of the Rayleigh backscattering, and the method to overcome the crosstalk penalty is presented. Then, another experiment to realize 80km WDM PON system with Raman amplifier is conducted, and it demonstrates a feasibility of such system. Finally, this thesis is concluded by a successful demonstration of the WDM-PON system with an enhanced reach.
目次 Table of Contents
中文摘要.......................................................................................................................I
ABSTRACT.................................................................................................................II
List of abbreviations..................................................................................................III
Chapter 1 Introduction................................................................................................1
1.1 Technological trend of the access network...................................................1
1.2 Motivation of this thesis.................................................................................2
Chapter 2 A proposal of next generation PON system concept...............................4
2.1 Introduction....................................................................................................4
2.2 The concept of current PON system.............................................................4
2.2.1 TDM-PON...........................................................................................4
2.2.2 WDM-PON..........................................................................................5
2.3 Concept of the proposed PON system..........................................................6
Chapter 3 Technical problems existed in the proposed PON system......................9
3.1 Introduction....................................................................................................9
3.2 Effects of coherent and incoherent crosstalks in bidirectional transmission system.............................................................................................9
3.2.1 Effect of Rayleigh backscattering in optical fiber transmission.....9
3.2.2 Principle of Raman amplifier..........................................................10
3.2.3 Coherent crosstalk (homowavelength linear crosstalk).................12
3.2.4 Incoherent crosstalk (heterowavelength linear crosstalk).............12
3.2.5 Calculation of coherent crosstalk and incoherent crosstalk.........12
3.3 Experiment to verify the issue of the proposed PON system...................13
3.3.1 Experimental setup...........................................................................13
3.3.2 Experimental result..........................................................................14
3.4 Strategy to eliminate the effect of coherent and incoherent crosstalk.....16
3.5 Conclusion....................................................................................................18
Chapter 4 Long reach WDM-PON system using Raman amplifier......................19
4.1 Introduction..................................................................................................19
4.2 Experimental setup......................................................................................19
4.3 Results and discussions................................................................................20
4.4 Conclusion....................................................................................................41
Chapter 5 Summary..................................................................................................42
參考文獻 References
[1] D. Gutierrez, J. Cho, and L. G. Kazovsky, “TDM-PON security issues: Upstream encryption is needed,” Proc. of OFC 2007, paper JWA83, 2007.
[2]Y. Horiuchi, N. Edagawa, "ONU authentication technique using loopback modulation within a PON disturbance environment," Proc. of OFC 2005, paper OFI3, 2005.
[3]S. W. Wong, W.-T. Shaw, S. Das, and L. G. Kazovsky, "Enabling Security Countermeasure and Service Restoration in Passive Optical Networks," Proc. of Globecom 2006, paper 1-5, 2006.
[4] C. H. Lee, “Passive optical networks for FTTX applications,” Proc. of OFC 2005,paper OWP3, 2005.
[5] Y. C. Chung, “Challenges towards practical WDM-PON”, Proc. of OECC 2006, paper 6C4-1, 2006.
[6] C. K. Chan, L. K. Chen, C. L. Lin, "WDM PON for next-generation optical broadband access networks," Proc. of OECC 2006, paper 5E2-1, 2006.
[7] M. Zirngibl, C. R. Doerr, and L. W. Stulz, "Study of spectral slicing for local access applications," IEEE Photon. Technol. Lett., vol. 8, no. 5, pp. 721-723, 1996.
[8] D. K. Jung, S. K. Shin, C. H. Lee, and Y. C. Chung, "Wavelength-division- multiplexed passive optical network based on spectrum-slicing techniques,"" IEEE Photon. Technol. Lett., vol. 10, no. 9, pp. 1334-1336, 1996.
[9] R. D. Feldman, E. E. Harstead, S. Jiang, T. H. Wood, M. Zimgibl, "An evaluation of architectures incorporating wavelength division multiplexing for broad-band fiber access," IEEE J. Lightwave Technol., vol. 16, no. 9, pp. 1546-1559, 1998.
[10] H. D. Kim, SG Kang, CH Le, "A Low-Cost WDM Source with an ASE Injected Fabry–Perot Semiconductor Laser," IEEE Photon. Technol. Lett., vol. 12, no. 8, pp. 1067-1069, 2000.
[11] S. L. Woodward, P. P. Iannone, K. C. Reichmann, and N. J. Frigo, “A spectrally sliced PON employing Fabry-Perot Lasers,” IEEE Photon. Techol. Lett., vol. 10, no. 9, pp.1337-1339, 1998.
[12] D. J. Shin, Y. C. Yeh, J. W. Kwon, E. H. Lee, J. K. Lee, M.K. Park, J. W. Park, Y. K. Oh, S. W. Kim, I. K. Yun, H. C.Shin, D. Heo, J. S. Lee, H. S. Shin, H. S. Kim, S. B. Park,D. K. Jung, S. T. Hwang, Y. J. Oh, and C. S. Shim, “Low-cost WDM-PON with colorless bi-directionaltransceivers,” IEEE J. Lightwave Techol. vol. 24, no. 1, pp. 158-165, 2006.
[13] K. M. Choi, C. H. Lee, “Colorless operation of WDM-PON based on wavelength locked Fabry-Perot laser diode,” Proc. of ECOC 2005, paper We3.3.4, 2005.
[14] P. Healy, P. Townsend, C. Ford, L. Johnston, P. Townley, I.Lealman, L. Rivers, S. Perrin, R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” IEE Electron. Lett, vol. 37, no. 19, pp. 1181-1182, 2001.
[15] T. Y. Kim, J. M. Kang, and S. K. Han, 'Performance analysis of bidirectional hybrid WDM/SCM-PON link based on reflective semiconductor optical amplifier,' Microwave Opt. Technol. Lett, vol. 48, no. 11, pp. 2306-2309, 2006.
[16] S. J. Park, G. Y. Kim, and T. S. Park, 'WDM-PON system based on the laser light injected reflective semiconductor optical amplifier,' Opt. Fiber Technol, vol. 12, no. 2, pp. 162-169, 2006.
[17] J. Prat, M. Omella, and V.Polo, “Wavelength shifting for colorless ONUs in single-fiber WDM-PONs,” Proc. of OFC 2007, paper OTuG6, 2007.
[18] H. Taga, W.-T. Shih, J.-Y. Wu, S.-S. Shu, S.-E. Liu, T.-H. Wu, and Y.-J. Chiu, “Experimental demonstration of DWDM passive optical network with colorless ONU incorporating wavelength interleaver,” Submitted to IEICE Trans. Commun.
[19] G. Talli and P. D. Townsend, “Feasibility demonstration of 100 km reach DWDM superPON with upstream bit rates of 2.5 Gb/s and 10Gb/s,” Proc. of OFC 2005, paper OFI1, 2005.
[20] T. H. Wood, R. A. Linke, B. L. Kasper and E. C. Carr, “Observation of Coherent Rayleigh Noise in Single-Source Bidirectional Optical Fiber Systems,” IEEE J. Lightwave Technol., vol. 6, no.2, pp. 346-352, 1988.
[21] J. L. Gimlett, M. Z. Iqbal, N. K. Cheung, A. Righetti, F. Fontana and G. Grasso, "Observation of equivalent Rayleigh scattering mirrors in lightwave systems with optical amplifiers", IEEE Photon. Technol. Lett., vol. 2, pp. 211 -213, 1990.
[22] S.-K. Liaw, S.-L. Tzeng and Y.-J. Hung, "Rayleigh backscattering induced power penalty on bidirectional wavelength reuse fiber systems”, Optics Communications, vol.188, no.1, pp. 63-67, 2001.
[23] B. K. Min, W. Lee, and N. Park, "Efficient formulation of Raman amplifier propagation equations with average power analysis," IEEE Photon. Technol. Lett., vol. 12, no. 11, pp. 1486-1488, 2000.
[24] S. V. Chernikov, S. A. E. Lewis and J. R. Taylor, "Broadband Raman amplifiers in the spectral range of 1480-1620 nm", Proc. of OFC/IOOC'99, paper WG6, 1999.
[25] M. G. Raymer and J. G. Mostowsky, “Stimulated Raman scattering: Unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. vol. 24, no. 4, pp.1980-1993, 1981.
[26]G..P.Agrawal. “Fiber-Optic Communication Systems” 3d ed.
[27] I. T. Monroy, R. Kjaer, B. Palsdottir, A. M. J. Koonen, and P. Jeppesen, “10 Gb/s bidirectional single fiber long reach PON link with distributed Raman amplification,” Proc. of ECOC 2006, paper We3.P.166.
[28] D. P. Shea and J. E. Mitchell, "A 10-Gb/s 1024-Way-Split 100-km Long-Reach Optical-Access Network," IEEE/OSA J. Lightwave Technol, vol. 25, no.3, pp. 685-693, 2007.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code