Responsive image
博碩士論文 etd-0722109-121423 詳細資訊
Title page for etd-0722109-121423
論文名稱
Title
鈦金屬/碳纖維/聚醚醚酮複材積層板之研製與機械性質探討
Manufacturing and Mechanical Properties of Ti/APC-2 Composite Laminates
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
96
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-06-18
繳交日期
Date of Submission
2009-07-22
關鍵字
Keywords
鈦金屬、APC-2、複材積層板、拉伸、疲勞、高溫、陽極
elevated temperature, fatigue, tension, composite laminate, APC-2, Titanium, anodic method of electroplating
統計
Statistics
本論文已被瀏覽 5666 次,被下載 1527
The thesis/dissertation has been browsed 5666 times, has been downloaded 1527 times.
中文摘要
本實驗主要目標為製造且試驗異向性鈦金屬碳纖維複材積層板,得到其在不同環境溫度下之機械性質及疲勞特性。三明治異向性複材積層板是由兩層碳纖維/聚醚醚酮與三層鈦金屬組合而成;在製造的過程中,為了使鈦板與APC-2有良好的黏結性質,會先對鈦板做鉻酸陽極處理,而APC-2則是會依照十字疊與類均向疊兩種疊序排放,之後藉由修正之膈膜成形法配合升溫固化成形熱壓結合。而拉伸與疲勞實驗皆是藉由MTS 810萬能動態材料試驗機來進行,並配合MTS 651環境控制箱來加熱及維持實驗所需要的環境溫度,如25°C、75°C、100°C、125°C與150°C。
在靜態拉伸實驗中可以得到積層板十字疊與類似均向疊的極限強度與縱向勁度等機械性質,並藉由得到的實驗數據繪製出積層板在不同環境溫度下的應力應變圖。在疲勞實驗方面,從中可以得到積層板的疲勞數據及抗疲勞性質,再藉由疲勞數據對照所施加疲勞應力則可以繪製出積層板在不同環境溫度下應力與疲勞振次關係圖。
綜觀拉伸與疲勞實驗之後可以得到以下結論:首先,不論疊序為何,隨著環境溫度的上昇,積層板的極限強度及縱向勁度隨之下降,在150°C為其最低值;第二,所有的積層板在不同溫度之下其應力應變圖都有一轉折點出現,而隨溫度上升轉折點會逐步前移,而此轉折點對實驗的誤差有相當的影響;第三,藉由疲勞數據與應力應變圖相比較,可以得知轉折點之前是積層板的彈性變形區域,之後則為塑性變型區域;第四,類似均向疊試片對疲勞的表現較十字疊試片好;第五,類似均向疊試片抗疲勞能力較十字疊好;第六,經修正之縱向勁度值誤差值在轉折點之前已達到預期,但在轉折點之後因為試片已受塑性變形破壞所以誤差值仍相當大。
Abstract
The aim of this thesis is to manufacture Ti/APC-2 hybrid composite laminates and obtain its mechanical properties and fatigue characteristics at elevated temperatures. Ti/APC-2 laminates were composed of two layers of APC-2 and three layers of titanium sheets. For superior bonding ability between titanium and APC-2, chromic anodic method was adopted to treat titanium sheets in manufacturing process and APC-2 was stacked according to cross-ply [0/90]s and quasi-isotropic [0/45/90/-45] sequences. Then, the modified curing process was adopted to fabricate Ti/APC-2 hybrid composite laminates. Tension and fatigue tests carried out with MTS 810 and MTS 651 environmental control chamber to lift and maintain experimental temperatures, such as 25°C, 75°C, 100°C, 125°C and 150°C.
From static tensile tests, the mechanical properties of cross-ply and quasi-isotropic composite laminates, such as ultimate strength, longitudinal stiffness were gained and the stress-strain diagrams of laminates were also plotted from testing data at elevated temperature. From fatigue tests we obtained laminate’s fatigue resistance properties and the experimental data of applied stress vs. cycles were plotted as S-N diagrams at elevated temperature.
From the tensile and fatigue tests, the important remarks were summarized as follows. First, no matter what the APC-2 stacking sequence was, the ultimate strength and longitudinal stiffness decreased while temperature rising, especially at 150°C; second, a turning point appeared at each stress-strain diagram that kink angle caused the decrease of stiffness while temperature rising; third, combining fatigue data and stress-strain diagrams we analogized a presumption that the region before turning point was in elastic behavior and after turning point in plastic deformation; fourth, quasi-isotropic laminates had better fatigue resistance than that of cross-ply laminates; sixth, the longitudinal stiffness before turning point was in good agreement with the prediction by using the modified ROM, however, after turning point the errors became large.
目次 Table of Contents
目 錄
目錄 Ⅰ
表目錄 Ⅳ
圖目錄 Ⅵ
摘要 Ⅹ
英文摘要 Ⅺ
第一章 緒論 1
1-1 前言 1
1-2複合材料概述 1
1-3 研究方向 2
1-4 文獻回顧 2
1-5 組織與章節 4
第二章 研究方法 5
2-1 材料性質簡介 5
2-1-1 鈦金屬 5
2-1-2 碳纖維/聚醚醚酮APC-2( AS-4/PEEK ) 6
2-2 實驗簡述 7
2-3 儀器設備 7
2-4 鈦金屬複材積層板之製程 9
2-4-1 鈦金屬之前處理 9
2-4-2 APC-2之前處理 9
2-4-3 熱壓製程 10
2-5 試片製作與分組 11
2-6 拉伸與疲勞實驗 12
2-7 掃瞄式電子顯微鏡(SEM) 13
第三章 實驗結果 25
3-1 鈦金屬前處理 25
3-2 鈦金屬表面處理 25
3-3靜態拉伸實驗 26
3-4疲勞實驗 27
3-5破壞斷面觀察 28
3-5-1 拉伸實驗觀察 28
3-5-2 疲勞實驗觀察 28
第四章 分析與討論 59
4-1 Ti/APC-2複材積層板機械性能探討 59
4-1-1 與混合理論比較 59
4-1-2 極限強度實驗值與混合理論比較 60
4-1-3縱向勁度曲線擬合值與混合理論比較 60
4-2 溫度效應 61
4-3 破壞模式之探討 62
4-3-1破壞過程 62
4-3-2拉伸破壞 63
4-3-3 疲勞破壞 64
4-4 表面處理探討 66
4-5 疲勞試驗與材料性質比較 67
第五章 結論 77
參考文獻 79

表 目 錄
表2-1 鈦金屬性質表 14
表2-2 碳纖維/聚醚醚酮(APC-2)性質表 15
表3-1 環境溫度25°C下鈦金屬/十字疊試片拉伸實驗數據 29
表3-2 環境溫度75°C下鈦金屬/十字疊試片拉伸實驗數據 29
表3-3 環境溫度100°C下鈦金屬/十字疊試片拉伸實驗數據 30
表3-4 環境溫度125°C下鈦金屬/十字疊試片拉伸實驗數據 30
表3-5 環境溫度150°C下鈦金屬/十字疊試片拉伸實驗數據 30
表3-6 環境溫度25°C下鈦金屬/類似均向疊試片拉伸實驗數據 31
表3-7 環境溫度75°C下鈦金屬/類似均向疊試片拉伸實驗數據 31
表3-8 環境溫度100°C下鈦金屬/類似均向疊試片拉伸實驗數據 31
表3-9 環境溫度125°C下鈦金屬/類似均向疊試片拉伸實驗數據 32
表3-10 環境溫度150°C下鈦金屬/類似均向疊試片拉伸實驗數據 32
表3-11 環境溫度25°C下鈦金屬/十字疊試片應力與疲勞振次表 33
表3-12 環境溫度75°C下鈦金屬/十字疊試片應力與疲勞振次表 34
表3-13 環境溫度100°C下鈦金屬/十字疊試片應力與疲勞振次表 35
表3-14 環境溫度125°C下鈦金屬/十字疊試片應力與疲勞振次表 36
表3-15 環境溫度150°C下鈦金屬/十字疊試片應力與疲勞振次表 37
表3-16 環境溫度25°C下鈦金屬/類似均向疊試片應力與疲勞振次表 38
表3-17 環境溫度75°C下鈦金屬/類似均向疊試片應力與疲勞振次表 39
表3-18 環境溫度100°C下鈦金屬/類似均向疊試片應力與疲勞振次表 40
表3-19 環境溫度125°C下鈦金屬/類似均向疊試片應力與疲勞振次表 41
表3-20 環境溫度150°C下鈦金屬/類似均向疊試片應力與疲勞振次表 42
表4-1 Ti/APC-2十字疊與類似均向疊試片極限強度之混合理論計算結果 68
表4-2 Ti/APC-2十字疊與類似均向疊試片縱向勁度之
混合理論計算與實驗值比較結果 69
表4-3 Ti/APC-2十字疊與類似均向疊試片縱向勁度之
混合理論計算結果(轉折點之前) 70
表4-4 Ti/APC-2十字疊與類似均向疊試片縱向勁度之
混合理論計算結果(轉折點之後) 71

圖 目 錄
圖2-1 鈦金屬/碳纖維/聚醚醚酮複材積層板製作及實驗流程 17
圖2-2 固緯PHS-2018A電源供應器 18
圖2-3 PVC陽極處理槽 18
圖2-4 GF-200 多功能精密電子天平 19
圖2-5 YS-N-I15201製氮機 19
圖2-6 熱壓成形機 20
圖2-7 GT-8510A水冷式鑽石輪切割機 20
圖2-8 MTS-458控制平台與電腦 21
圖2-9 MTS-810材料試驗機與環境控制箱 21
圖2-10 MTS-634.11F-25 高溫應變計 22
圖2-11 電子顯微鏡 (a) JEOL-6330 (b) JEOL-6400 22
圖2-12 複材積層板中APC-2疊層示意圖 23
圖2-13 積層板堆疊示意圖 23
圖2-14 複材積層板熱壓成形之進程圖 24
圖2-15 標準試片尺寸圖 24
圖3-1 鈦金屬經過鹼洗之後表面SEM圖 43
圖3-2 鈦金屬經過酸蝕刻之後表面SEM圖 43
圖3-3 鈦金屬經過鹼洗之後表面EDS圖 43
圖3-4 鈦金屬經過酸蝕刻之後表面EDS圖 44
圖3-5 陽極處理時所呈現之動態平衡 44
圖3-6 經陽極處理後鈦金屬表面 44
圖3-7 環境溫度25°C下鈦金屬/十字疊試片拉伸應力應變關係圖 45
圖3-8 環境溫度75°C下鈦金屬/十字疊試片拉伸應力應變關係圖 45
圖3-9 環境溫度100°C下鈦金屬/十字疊試片拉伸應力應變關係圖 46
圖3-10 環境溫度125°C下鈦金屬/十字疊試片拉伸應力應變關係圖 46
圖3-11 環境溫度150°C下鈦金屬/十字疊試片拉伸應力應變關係圖 47
圖3-12 環境溫度25°C下鈦金屬/類似均向疊試片拉伸應力應變關係圖 47
圖3-13 環境溫度75°C下鈦金屬/類似均向疊試片拉伸應力應變關係圖 48
圖3-14 環境溫度100°C下鈦金屬/類似均向疊試片拉伸應力應變關係圖 48
圖3-15 環境溫度125°C下鈦金屬/類似均向疊試片拉伸應力應變關係圖 49
圖3-16 環境溫度150°C下鈦金屬/類似均向疊試片拉伸應力應變關係圖 49
圖3-17 環境溫度25°C下鈦金屬/十字疊試片
無因次化應力與疲勞振次曲線擬合圖 50
圖3-18 環境溫度75°C下鈦金屬/十字疊試片
無因次化應力與疲勞振次曲線擬合圖 50
圖3-19 環境溫度100°C下鈦金屬/十字疊試片
無因次化應力與疲勞振次曲線擬合圖 51
圖3-20 環境溫度125°C下鈦金屬/十字疊試片
無因次化應力與疲勞振次曲線擬合圖 51


圖3-21 環境溫度150°C下鈦金屬/十字疊試片
無因次化應力與疲勞振次曲線擬合圖 52
圖3-22 環境溫度25°C下鈦金屬/類似均向疊試片
無因次化應力與疲勞振次曲線擬合圖 52
圖3-23 環境溫度75°C下鈦金屬/類似均向疊試片
無因次化應力與疲勞振次曲線擬合圖 53
圖3-24 環境溫度100°C下鈦金屬/類似均向疊試片
無因次化應力與疲勞振次曲線擬合圖 53
圖3-25 環境溫度125°C下鈦金屬/類似均向疊試片
無因次化應力與疲勞振次曲線擬合圖 54
圖3-26 環境溫度150°C下鈦金屬/類似均向疊試片
無因次化應力與疲勞振次曲線擬合圖 54
圖3-27 不同環境溫度下鈦金屬/十字疊試片
無因次化應力與疲勞振次曲線擬合圖 55
圖3-28 不同環境溫度下鈦金屬/類似均向疊試片
無因次化應力與疲勞振次曲線擬合圖 55
圖3-29 鈦金屬/十字疊試片在各種環境溫度下
經拉伸實驗破壞之斷裂圖 56
圖3-30 鈦金屬/類似均向疊試片在各種環境溫度下
經拉伸實驗破壞之斷裂 56
圖3-31 十字疊/類似均向疊試片經中、高應力疲勞試驗破壞之斷裂圖 57
圖3-32 十字疊/類似均向疊試片經低應力疲勞試驗破壞之脫層圖 58
圖4-1 APC-2常溫下拉伸應力應變圖 72
圖4-2 鈦金屬常溫下拉伸應力應變圖 72
圖4-3 因層間應力殘留導致鈦金屬產生應變 73
圖4-4 經低應力疲勞試驗之後脫層試片 73
圖4-5 經疲勞實驗後試片脫層部位示意圖 74
圖4-6 經機械拋光表面處理與鉻酸陽極表面處理積層板比較 75
圖4-7 Ti/APC-2複材積層板之彈性與塑性變形區域 76
參考文獻 References
[1] Vlot A. Historical overview. In: Fibre metal laminates; an introduction. Dordrecht: Kluwer Academic Publishers; 2001.
[2] Marissen, R., “Flight Simulation Behaviour of Aramid Reinforced Aluminum Laminates (ARALL)”, Eng. Fract. Mech., Vol. 19, No. 2, pp.261-277, 1984.
[3] Marissen, R., Trautmann, K. H., Foth, J. and Nowack, H., “Microcrack Growth in Aramid Reinforced Aluminum Laminates (ARALL)”, Fatigue 84, Proc. 2nd Int. Conf. On Fatigue and Fatigue thresholds (edited by C. J. Beevers), Vol. Ⅱ, EMAS Ltd. Warley, U.K., pp. 1081-1089, 1984.
[4] Marissen, R., “Fatigue Mechanisms in ARALL, a Fatigue Resistant Hybrid aluminum Aramid Composite Material”, Fatigue 87, Proc. 3rd Int. Conf. on Fatigue and Fatigue thresholds (Edited by R. O. Ritchie and E. A. Starke), Vol. 3, EMAS Ltd. Warley, U.K., pp. 1271-1279, 1987.
[5] Lin, C. T., Yang, F. S. and Kao, P. W., “Fatigue Behavior of Carbon Fibre-Reinforced Aluminum Laminates”, Composites, Vol. 22, No. 2, pp. 135-141, 1991.
[6] Ritchie, R. O., Yu, W. and Bucci, R. J., “Fatigue Crack Propagation in ARALL Laminates: Measurement of the Effect of Crack-tip Shielding from Crack Bridging”, Eng. Fract. Mech., Vol. 32, No. 3, pp. 361-377, 1989.
[7] Macheret, J., Teply, J. L. and Winter, E. F. M., “Delamination Shape Effects in Aramid-Epoxy-Aluminum (ARALL) Laminates with Fatigue Cracks”, Polymer Composites, Vol. 10, No. 5, pp. 322-327, 1989.
[8] Krishnakumar S., “Fiber metal laminates: the synthesis of metals and composites”, Mater Manuf Process, Vol.9, pp. 295-354, 1994.
[9] Cortes P., Cantwell W.J., “Fracture properties of a fiber–metal laminates based on magnesium alloy”, Composites: Part B, Vol. 37, pp. 163-170, 2006.
[10] Reyes G., “Processing and characterisation of the mechanical properties of novel fibre–metal laminates”, PhD thesis, University of Liverpool, 2002.
[11] Cortes P, Cantwell WJ., “The fracture properties of a fibre–metal laminates based on magnesium alloy”, Composites: Part B, Vol. 37, pp. 163-170, 2006.
[12] Li E, Johnson WS., “An investigation into fatigue of a hybrid titanium composite laminate”, J. Compos. Technol. Res., Vol. 20, pp. 3-12, 1998.
[13] Cortes P, Cantwell WJ., “The tensile and fatigue properties of carbon fiber-reinforced PEEK-titanium fiber–metal laminates”, J. Reinf. Plast. Compos., Vol. 23, pp. 1615-1623, 2004.
[14] Ritchie RO, Yu W, Bucci RJ., “Fatigue crack propagation in ARALL® laminates: measurement of the effect of crack-tip shielding from crack bridging”, Eng. Fract. Mech., Vol. 32, pp. 361-377, 1989.
[15] Aort Vander, “Materials Science and Engineering Series”, McGraw-Hill, Inc, 1984.
[16] Wegman Raymond F., “Surface Preparation Techniques For Adhesive Bonding”, Noyes Publications, Park Ridge, NJ, USA, 1989.
[17] Critchlow G.W., Brewis D.M., “Review of surface pretreatment for titanium alloys”, Int. J. Adhesion and Adhesives, Vol. 15, pp. 161-172, 1995.
[18] Zwilling V., Aucouturier M., Darque-Ceretti E., “Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach”, Electrochimica Acta, Vol. 45, pp. 921-929, 1999.
[19] Zwilling V., Darque-Ceretti E., Boutry-Forveille A., David D., Perrin M. Y., Aucouturier M., “Structure and Physicochemistry of Anodic Oxide Films on Titanium and TA6V Alloy”, Surf. Interface Anal., Vol. 27, pp. 629-637, 1999.
[20] Molitor P., Barron V., Young T., “Surface treatment of titanium for adhesive bonding to polymer composites:a review”, Int. J. Adhesion and Adhesives, Vol. 21, pp. 129-136, 2001.
[21] Gong Dawei, Craig Grimes A., Varghese Oomman K., “Titanium oxide nanotube arrays prepared by anodic oxidation”, Materials Research Society, Vol. 16, No. 12, pp. 3331-3334, 2001.
[22] Gong Dawei, Grimes Craig A., Varghese Oomman K., Hu Wenchong, Singh R. S., Chen Zhi, Dickey Elizabeth C., “Titanium oxide nanotube arrays prepared by anodic oxidation”. J. Mater. Res., Vol. 16, No. 12, DEC 2001.
[23] Molitor P., Young T., “Adhesive bonding of a titanium alloy to a glass fibre reinforced composite material”, Int. J. Adhesion and Adhesives, Vol.22, pp.101-107, 2002.
[24] Habazaki H., Uozumi M., Konno H., Shimizu K., Skeldon P., Thompson G.E., “Crystallization of anodic titania on titanium and its alloys”, Corrosion Science, Vol. 45, pp. 2063-2073, 2003.
[25] Tang Guang-Xin, Yan Yong-nian, Zhang Ren-ji, Zhu Zhang-xiao, “Preparation of porous anatase titania film”, Materials Letters, Vol. 58, pp. 1857-1860, 2004.
[26] Zhao Jianling, Wang Xiaohui *, Chen Renzheng, Li Longtu, “Fabrication of titanium oxide nanotube arrays by anodic oxidation”, Solid State Communications, Vol. 134, pp. 705-710, 2005.
[27] 陶海軍, 陶杰, 王玲, 王煒, “純鈦及其合金表面奈米多孔TiO2膜的製備研究”, 南京航空航天大學學報, Vol. 37, No. 5, pp. 597-602, 2005.
[28] Kuromoto Neide K., Simão Renata A., Soares Gloria A., “Titanium oxide films produced on commercially pure titanium by anodic oxidation with different voltages”, Materials Characterization, Vol. 58, pp. 114-121, 2007.
[29] Kang Soon Hyung, Kim Jae-Yup, Kim Hyun Sik, Sung Yung-Eun, “Formation and mechanistic study of self-ordered TiO2 nanotubes on Ti substrate”, Journal of Industrial and Engineering Chemistry, Vol. 14, pp. 52-59, 2008.
[30] Yu Xiaofeng, Li Yongxiang, Wojtek Wlodarski, Sasikaran Kandasamy, Kourosh Kalantar-zadeh, “Fabrication of nanostructured TiO2 by anodization: A comparison between electrolytes and substrates”, Sensors and Actuators B, Vol. 130, pp. 25-31, 2008.
[31] Corte’s P., Cantwell W. J., “The Prediction of Tensile Failure in Titanium-Based Thermoplastic Fibre–Metal Laminates”, Composites Science and Technology, Vol. 66, pp. 2306-2316, 2006.
[32] Johnson W. S.,. Hammond M. W, “Crack growth behavior of internal titanium plies of a fiber metal laminate”, Composites: Part A, Vol. 39, pp. 1705-1715, 2008.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code